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Maximum Satisfiability

Maximum Satisfiability—MaxSAT
Exact Boolean optimization paradigm
▶ Builds on the success story of Boolean satisfiability (SAT)

solving
▶ Great recent improvements in practical solver technology
▶ Expanding range of real-world applications

Offers an alternative to e.g. integer programming
▶ Solvers provide provably optimal solutions
▶ Propositional logic as the underlying declarative language:

especially suited for inherently “Boolean” optimization
problems



Outline

1. Motivation and basic concepts

2. MaxSAT solving:
Practical algorithms for MaxSAT



Success of SAT

The Boolean satisfiability (SAT) Problem
Input: A propositional logic formula F.
Task: Is F satisfiable?

SAT is a Great Success Story
Not merely a central problem in theory:
Remarkable improvements since mid 90s in SAT solvers:
practical decision procedures for SAT
▶ Find solutions if they exist
▶ Prove non-existence of solutions
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SAT Solvers

From 100s of variables and constraints (early 90s)
up to 10M variables and constraints. (21st century).
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Core NP search procedures for solving various types of
computational problems
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Optimization

Most real-world problems involve an optimization component
Examples:
▶ Find a shortest path/plan/execution/…to a goal state

▶ Planning, model checking, …
▶ Find a smallest explanation

▶ Debugging, configuration, …
▶ Find a least resource-consuming schedule

▶ Scheduling, logistics, …
▶ Find a most probable explanation (MAP)

▶ Probabilistic inference, …

High demand for automated approaches to
finding good solutions to computationally hard

optimization problems
⇝ Maximum satisfiability
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MaxSAT Applications

Drastically increasing number of successful applications
▶ Planning, Scheduling, and Configuration
▶ Data Analysis and Machine Learning
▶ Knowledge Representation and Reasoning
▶ Combinatorial Optimization
▶ Verification and Security
▶ Bioinformatics
▶ …

▶ Tens of new problem domains in MaxSAT Evaluations

This progress is much due to significant progress in efficient
MaxSAT solvers.



Progress in MaxSAT Solver Performance
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Comparing some of the best solvers from 2010–2020:
In 2020: 81% more instances solved than in 2010!
▶ On same computer, same set of benchmarks:

576 unweighted MaxSAT Evaluation 2020 instances



Basic Concepts



MaxSAT: Basic Definitions

MaxSAT
INPUT: a set of clauses F. (a CNF formula)
TASK: find τ s.t.

∑
C∈F

τ(C) is maximized.

Find truth assignment that satisfies a maximum number of clauses

This is the standard definition, much studied in Theoretical
Computer Science.
▶ Often inconvenient for modeling practical problems.



Central Generalizations of MaxSAT

Weighted MaxSAT
▶ Each clause C has an associated weight wC
▶ Optimal solutions maximize the sum of weights of satisfied

clauses: τ s.t.
∑
C∈F

wcτ(C) is maximized.

Partial MaxSAT
▶ Some clauses are deemed hard—infinite weights

▶ Any solution has to satisfy the hard clauses
⇝ Existence of solutions not guaranteed

▶ Clauses with finite weight are soft

Weighted Partial MaxSAT
Hard clauses (partial) + weights on soft clauses (weighted)



MaxSAT: Example

Shortest Path
Find shortest path in a grid with horizontal/vertical moves.
Travel from S to G.
Cannot enter blocked squares.
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MaxSAT: Example

▶ Note: Best solved with state-space search
▶ Used here to illustrate how MaxSAT solving algorithms

work and differ

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:

In CNF: unit hard clauses (S) and (G).

▶ A soft clause of weight 1 for all other squares:
In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”
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MaxSAT: Example

▶ Need to force the existence of a path between S and G by
additional hard clauses

A way to enforce a path between S and G:
▶ both S and G must have exactly one visited

neighbour
▶ Any path starts from S
▶ Any path ends at G

▶ other visited squares must have exactly two
visited neighbours
▶ One predecessor and one successor on the

path
S
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MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.

▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)

▶ For G: k + q + r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m



MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.
▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)

▶ For G: k + q + r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m



MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.
▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)
▶ For G: k + q + r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m



MaxSAT: Example

Constraint 2:
Other visited squares must have exactly two visited neighbours
▶ For example, for square e: e → (d + j + l + f = 2)

▶ Requires encoding the cardinality constraint d + j + l + f = 2 in
CNF

Encoding Cardinality Constraints in CNF
▶ An important class of constraints, occur

frequently in real-world problems
▶ A lot of work on CNF encodings of

cardinality constraints
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MaxSAT: Example

S
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Properties of the encoding
▶ Every solution to the hard clauses is a

path from S to G that does not pass a
blocked square.

▶ Such a path will falsify one negative soft
clause for every square it passes through.
▶ orange path: assign 14 variables in

{S, a, c, h, . . . , t, r,G} to true
▶ MaxSAT solutions:

paths that pas through a minimum
number of squares (i.e., is shortest).
▶ green path: assign 8 variables in

{S, b, g, f, . . . , k,G} to true



MaxSAT: Complexity

Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSAT is FPNP–complete
▶ Polynomial number of oracle calls
▶ A SAT solver acts as the NP oracle most often in practice
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Push-Button Solvers

▶ Black-box, no command line
parameters necessary

▶ Input: CNF formula, in the standard
DIMACS WCNF file format

▶ Output: provably optimal solution, or
UNSATISFIABLE
▶ Complete solvers

mancoosi-test-i2000d0u98-26.wcnf
p wcnf 18169 112632 31540812410
31540812410 -1 2 3 0
31540812410 -4 2 3 0
31540812410 -5 6 0
...
18170 1133 0
18170 457 0
... truncated 2.4 MB

Internally rely especially on CDCL SAT solvers
for proving unsatisfiability of subsets of clauses



Push-Button Solver Technology

Example: $ openwbo mancoosi-test-i2000d0u98-26.wcnf

c Open-WBO: a Modular MaxSAT Solver
c Version: 1.3.1 – 18 February 2015
...
c | Problem Type: Weighted
c | Number of variables: 18169
c | Number of hard clauses: 94365
c | Number of soft clauses: 18267
c | Parse time: 0.02 s
...
o 10548793370
c LB : 15026590
c Relaxed soft clauses 2 / 18267
c LB : 30053180
c Relaxed soft clauses 3 / 18267
c LB : 45079770
c Relaxed soft clauses 5 / 18267
c LB : 60106360

...
c Relaxed soft clauses 726 / 18267
c LB : 287486453
c Relaxed soft clauses 728 / 18267
o 287486453
c Total time: 1.30 s
c Nb SAT calls: 4
c Nb UNSAT calls: 841
s OPTIMUM FOUND
v 1 -2 3 4 5 6 7 8 -9 10 11 12 13 14 15 16 ...
... -18167 -18168 -18169 -18170



MaxSAT Evaluations

https://maxsat-evaluations.github.io

Objectives
▶ Assessing the state of the art in the field of MaxSAT solvers
▶ Collecting publicly available MaxSAT benchmark sets
▶ Various solvers from various research groups internationally

participate each year
▶ Standard input format
▶ Tracks for both complete and incomplete solvers

https://maxsat-evaluations.github.io


MaxSAT Solving:
Practical Algorithms for

MaxSAT



Types of MaxSAT Solvers

MaxSAT Solver
Practical implementation of an algorithm for finding (optimal)
solutions to MaxSAT instances

Complete vs Incomplete MaxSAT Solvers
▶ Complete:

Guaranteed to output a provably optimal solution to any
instance
(given enough resources (time & space))

▶ “Incomplete”:
Tailored to provide “good” solutions quickly
(potentially) no guarantees on optimality of solutions



Availability

Open Source
Starting from 2017, solvers need to be open-source in order to
participate in MaxSAT Evaluations
▶ Incentive for openness
▶ Allow other to build on and test new ideas on establish solver

source bases
https://maxsat-evaluations.github.io/

https://maxsat-evaluations.github.io/


Complete MaxSAT Solving



Types of Complete Solvers

▶ Branch and Bound
▶ Can be effective on small-but-hard & randomly generated

instances
▶ SAT-based MaxSAT algorithms

▶ Model-improving
▶ Core-guided
▶ Implicit hitting set

Focus here
▶ Complete solvers: Core-guided & implicit hitting set
▶ Incomplete: Combining different solving strategies



Model Improving: Upper Bound Search for MaxSAT

F

Find upper bound k for
#unsatisfied soft clauses

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT
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Model-Improving MaxSAT Solving
▶ Model-improving can be very efficient when:

▶ The number of soft clauses is small
▶ The optimal solution corresponds to unsatisfying the majority

of soft clauses

▶ Example of state-of-the-art solvers that use this algorithm:
▶ QMaxSAT [Koshimura, Zhang, Fujita, and Hasegawa, 2012]
▶ Pacose [Paxian, Reimer, and Becker, 2018]

▶ Also applied in incomplete MaxSAT solving — more on this
later!

▶ Challenges:
▶ Constraint that restricts the UB grows with the number of soft

clauses (weights of the soft clauses)



Core-Guided MaxSAT
Solving



Lower Bound Search for MaxSAT
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Lower Bound Search for MaxSAT
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Lower Bound Search for MaxSAT
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Unsatisfiability-based search for MaxSAT
▶ Simple idea:

▶ For LB = 0, . . ., query SAT solver on
H ∧ S ∧ CostLessThan(LB)

▶ Iterate until SAT solver reports satisfiable
▶ The first model found will be optimal.

▶ Challenges:

▶ Incrementality, i.e. maintaining information across iterations
▶ Constraint that restricts the LB grows with the number of soft

clauses (weights of the soft clauses)

▶ No existing solver uses this algorithm

▶ Alternatives:

▶ Change the refinement procedure to relax soft clauses lazily:

▶ Use unsat cores to only consider a subset of the soft clauses
▶ Constraint that restricts the LB will be much smaller
▶ Can scale to problems with millions of soft clauses
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Unsatisfiable subformula — UNSAT Cores

Formula:

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

▶ Formula is unsatisfiable

▶ Unsatisfiable subformula (core):
▶ F′ ⊆ F, such that F′ is unsatisfiable

▶ Subset of soft clauses which together with the hard clauses
constitute an unsatisfiable CNF formulas

H = {. . . , (S), (S → (a + b = 1), . . .}
κ = {(¬a), (¬b)} ⊂ S
SAT-Solve(H ∧ κ) =UNSAT

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q
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Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

▶ Various different core-guided solvers proposed.
▶ Focus here on a high-level view on how to use cores:

▶ Relax cores together.
▶ Relax cores separately.
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Relax Cores together - MSU3
Shortest Path

Intuition

1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R
3. Otherwise, an optimal model τ has been found

LB = 0,R = {}

LB = 1,R = {a, b}LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits no nodes
from the set R?

SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits at most 5 nodes
from the set R?

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6
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MSU3 Core-Guided Algorithm
Summary

▶ MSU3 algorithm can be very efficient when:
▶ The size of the cores found at each iteration are small
▶ The optimal solution corresponds to satisfying the majority of

soft clauses

▶ Example of state-of-the-art solvers that use this algorithm:
▶ Open-WBO [Martins, Manquinho, and Lynce, 2014]

▶ Challenges:
▶ Constraint that restricts the LB grows with the size of cores
▶ Does not capture local core information



MSU3

No Local Information:
▶ In the third iteration, we are asking for a path that satisfies

a + b + c + g ≤ 2

▶ Based on the cores we know a + b ≤ 1 and c + g ≤ 1

LB = 2,R = {a, b, c, g}

{(¬a), (¬b)} is a core
→ all paths go through a or b

{(¬c), (¬g)} is a core
→ all paths go through c or g

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Alternative:
Relax each core separately
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Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S

2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly
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1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q
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Shortest path

Intuition
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2. For i = 0, . . . check if Hi ∧ Si is satisfiable

3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅

LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅

LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}

κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅

LB = 1, i = 1, K = {κ0}

LB = 2, i = 2, K = {κ0, κ1}LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅

LB = 1, i = 1, K = {κ0}

LB = 2, i = 2, K = {κ0, κ1}LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core:

κ0 = {(¬a), (¬b)}

κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅LB = 1, i = 1, K = {κ0}

LB = 2, i = 2, K = {κ0, κ1}

LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}

LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}

LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}

LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q



Separate Core relaxation
Summary

▶ First instantiated by Fu-Malik [Fu and Malik, 2006]

▶ Other early instantiations in WBO, and WPM1
[Manquinho, Marques-Silva, and Planes, 2009; Ansótegui, Bonet, and Levy,

2009]

▶ Today, most solvers use OLL [Andres, Kaufmann, Matheis, and Schaub,
2012; Morgado, Dodaro, and Marques-Silva, 2014]

▶ Benefits:

▶ Encoding cardinality constraints into CNF is efficient since it
only uses AtMost 1 constraints

▶ Challenges:

▶ Multiple cardinality constraints
▶ Extracting cores from reformulated formula can be

exponentially harder [Bacchus and Narodytska, 2014]
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▶ Today, most solvers use OLL [Andres, Kaufmann, Matheis, and Schaub,
2012; Morgado, Dodaro, and Marques-Silva, 2014]

▶ Benefits:
▶ Encoding cardinality constraints into CNF is efficient since it

only uses AtMost 1 constraints

▶ Challenges:
▶ Multiple cardinality constraints
▶ Extracting cores from reformulated formula can be

exponentially harder [Bacchus and Narodytska, 2014]



Implicit Hitting Set Algorithms
for MaxSAT

[Davies and Bacchus, 2011, 2013b,a]



Hitting Sets and UNSAT Cores

Hitting Sets
Given a collection S of sets of elements,
A set hs is a hitting set of S if hs ∩ s 6= ∅ for all s ∈ S.
A hitting set hs is optimal if no hs′ ⊂

∪
S with |hs′| < |hs| is a

hitting set of S.

What does this have to do with MaxSAT?
For any MaxSAT instance F:
for any optimal hitting set hs of the set of UNSAT cores of F,
there is an optimal solutions τ to F such that τ satisfies exactly
the clauses F \ hs.



Hitting Sets and UNSAT Cores

Hitting Sets
Given a collection S of sets of elements,
A set hs is a hitting set of S if hs ∩ s 6= ∅ for all s ∈ S.
A hitting set hs is optimal if no hs′ ⊂

∪
S with |hs′| < |hs| is a

hitting set of S.

What does this have to do with MaxSAT?
For any MaxSAT instance F:
for any optimal hitting set hs of the set of UNSAT cores of F,
there is an optimal solutions τ to F such that τ satisfies exactly
the clauses F \ hs.



Hitting Sets and UNSAT Cores

Key insight
To find an optimal solution to a MaxSAT instance F,
it suffices to:
▶ Find an (implicit) hitting set hs of the UNSAT cores of F.

▶ Implicit refers to not necessarily having all MUSes of F.
▶ Find a solution to F \ hs.



Implicit Hitting Set Approach to MaxSAT
Iterate over the following steps:
▶ Accumulate a collection K of UNSAT cores

using a SAT solver
▶ Find an optimal hitting set hs over K,

and rule out the clauses in hs for the next SAT solver call
using an IP solver

…until the SAT solver returns satisfying assignment.

Hitting Set Problem as Integer Programming

min
∑

C∈∪K
c(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function c: works also for weighted MaxSAT



Implicit Hitting Set Approach to MaxSAT
Iterate over the following steps:
▶ Accumulate a collection K of UNSAT cores

using a SAT solver
▶ Find an optimal hitting set hs over K,

and rule out the clauses in hs for the next SAT solver call
using an IP solver

…until the SAT solver returns satisfying assignment.
Hitting Set Problem as Integer Programming

min
∑

C∈∪K
c(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function c: works also for weighted MaxSAT



Implicit Hitting Set Approach to MaxSAT

“Best out of both worlds”
Combining the main strengths of SAT and IP solvers:
▶ SAT solvers are very good at proving unsatisfiability

▶ Provide explanations for unsatisfiability in terms of cores
▶ Instead of adding clauses to / modifying the input MaxSAT

instance:
each SAT solver call made on a subset of the clauses in the
instance

▶ IP solvers at optimization
▶ Instead of directly solving the input MaxSAT instance:

solve a sequence of simpler hitting set problems over the cores



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

H, S
hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

1. Initialize
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat
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found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

2. UNSAT core
H, S

hs := ∅
K := ∅

SAT solver
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IP solver
min
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C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c
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hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

3. Update core set
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

4. Min-cost HS of K
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

5. UNSAT core
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSAT by SAT and Hitting Set Computations

Intuition: After optimally hitting all cores of H ∧ S by hs:
any solution to H ∧ (S \ hs) is guaranteed to be optimal.

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅

K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}

hs = ∅

hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...
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Shortest Path
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Hitting sets provide candidate paths.
Sat solver verifies the candidates.
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SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
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is there a path that through a, c, d, e, l, r?
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i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅
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hs = ∅

hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅

IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
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Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅

K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}

hs = ∅

hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))

SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅

K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}

hs = ∅

hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}SAT-Solve(H ∧ (S \ hs))

SAT-Solve(H ∧ (S \ hs))
is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}
hs = ∅

hs = {(¬q)}

hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅

IP-solve(K) = {(¬q)}

IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}
hs = ∅hs = {(¬q)}

hs = {(¬q)}

hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))

SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?

SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
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Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}
hs = ∅hs = {(¬q)}

hs = {(¬q)}

hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?
SAT-Solve(H ∧ (S \ hs))

SAT-Solve(H ∧ (S \ hs))
is there a path that only goes through q?

SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
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Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}
hs = ∅hs = {(¬q)}hs = {(¬q)}

hs = {(¬k), (¬a)}

hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}

IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
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Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}

hs = {(¬k), (¬a)}

hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}

IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
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Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}

hs = {(¬b), (¬g), (¬r)}

hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}

IP-solve(K) = {(¬b), (¬g), (¬r)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}

hs = {(¬b), (¬g), (¬r)}

hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}

IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
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Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}

hs = {(¬b), (¬c), (¬f), (¬k)}

hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}

IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
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Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}

hs = {(¬b), (¬c), (¬f), (¬k)}

hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}

IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
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Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...



MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}

hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}

IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
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Note:
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Optimizations in Solvers

Solvers implementing the implicit hittings set approach include
several optimizations, such as
▶ a disjoint phase for obtaining several cores before/between

hitting set computations,
combinations of greedy and exact hitting sets computations

[Davies and Bacchus, 2011, 2013b,a; Saikko, Berg, and Järvisalo, 2016]

▶ LP-solving techniques such as reduced cost fixing
[Bacchus, Hyttinen, Järvisalo, and Saikko, 2017]

▶ abstract cores [Berg, Bacchus, and Poole, 2020]

▶ …

Some of these optimizations are integral for making the solvers
competitive.



Implicit Hitting Set

▶ Effective on range of MaxSAT problems including large ones.
▶ Superior to other methods when there are many distinct

weights.
▶ Usually superior to CPLEX.



Incomplete MaxSAT Solving



Why Incomplete Solving?

▶ Scalability
▶ Proving optimality often the most challenging step of

complete algorithms
▶ Proofs of optimality not always necessary

▶ Finding good solutions fast



From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.
▶ Essentially all complete solvers can be seen as incomplete

solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?
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(Some of the) solvers in the latest evaluation

Solver SLS Model Improving Core-Guided SAT-based SLS Other
Loandra x x
StableResolver x x
TT-Open-WBO-Inc x
sls-mcs x x
sls-lsu
SATLike-c x x x
Open-WBO-Inc-complete x x x
Open-WBO-Inc-satlike x x x

Take Home Message
Effective incomplete solvers make use of several different
algorithms.
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Approaches to Incomplete MaxSAT

Model-Improving Search
How to improve the model-improving algorithm for incomplete
search.
complete & any-time

Core-Boosted search
Combine core-guided and model-improving search.
complete & any-time

Stochastic Local Search (SLS)
Quickly traverse the search space by local changes to current
solution
Improved with a SAT solver
incomplete



Model-Improving Search



Model-Improving Algorithm
Shortest Path

Intuition

1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞

UB = 10UB = 10UB = 8UB = 8UB = 6
SAT-SOLVE(H)SAT-SOLVE(H)SAT-SOLVE (H ∧ CostLessThan(S,UB))SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q
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Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:

▶ Rescale weights.
▶ Core-Boosted Search

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S = {(C1, 100), (C2, 101), (C3, 123), (C4, 1205), (C5, 1540), (C6, 1260) . . .}

S = {(C1, 1), (C2, 1), (C3, 1), (C4, 12), (C5, 15), (C6, 12) . . .}

Divide by 100

S = {(C1, 100), (C2, 101), (C3, 123), (C4, 1205), (C5, 1540), (C6, 1260) . . .}

S = {(C4, 2), (C5, 3), (C6, 2) . . .}

Divide by 500
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Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Rescale weights.
▶ Core-Boosted Search
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Core-Boosted Search
Shortest path [Berg, Demirovic, and Stuckey, 2019]

Intuition
1. Solutions to F = (H0, S0) → shortest paths from S to G

2. Solutions to F2 = (H2, S2) → shortest paths from κ0 to κ1

LB = 0, i = 0, K = ∅

LB = 2, i = 2, K = {κ0, κ1}

MAXSAT-SOLVE(Hi ∧ Si)

cost(F) = 6

What is the length of the shortest path
from S to G?

What is the length of the shortest path
from a or b to q, k, or r?

cost(F2) = 4

2, 4
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a ? f ? t
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Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Bottleneck
Core-extraction gets
more difficult over time

Bottleneck
Size of PB constraint
depends on the UB
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State-of-the-art performance
(in 2020) on unweighted instances.
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Stochastic Local Search for MaxSAT



SLS for MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Key challenges
▶ How to guarantee that solutions satisfy hard clauses?
▶ How to make use of the weights?

Proposed solutions:

▶ Extend weights to all clauses

▶ Initialize weight of all hard clauses to 1
▶ Flip literals from unsatisfied clauses with high weight.
▶ Periodically increase weights of clauses that are frequently

unsatisfied.

▶ Use a SAT solver to satisfy the hard clauses
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SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬a), (¬b), (¬c), . . .}S = {(¬b), (¬c), (¬d), . . .}S = {(¬c), (¬d), (¬e), . . .}

UB = 10

UB = 6UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
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Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
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SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

Further improvements by more sophisticated ways of
ordering soft clauses

State-of-the-art performance on weighted instances



Incomplete MaxSAT
Summary

▶ Incomplete MaxSAT solving seeks to address scalability
without sacrificing solution quality (too much)

▶ Several different approaches developed in recent years
▶ Orthogonal performance on different domains.
▶ Best solvers combine several different algorithms

Take Home Message - Which solver to choose?
Short answer: Depends on the domain.
Longer answer (in 2021): Try TT-Open-WBO-Inc for weighted and
SATLike (2020 version) or Loandra for unweighted.



Incomplete MaxSAT
Summary

▶ Incomplete MaxSAT solving seeks to address scalability
without sacrificing solution quality (too much)

▶ Several different approaches developed in recent years
▶ Orthogonal performance on different domains.
▶ Best solvers combine several different algorithms

Take Home Message - Which solver to choose?
Short answer: Depends on the domain.
Longer answer (in 2021): Try TT-Open-WBO-Inc for weighted and
SATLike (2020 version) or Loandra for unweighted.



Summary



MaxSAT
▶ Low-level constraint language:

weighted Boolean combinations of binary variables
▶ Gives tight control over how exactly to encode problem

▶ Exact optimization: provably optimal solutions
▶ MaxSAT solvers:

▶ build on top of highly efficient SAT solver technology
▶ various alternative approaches:

branch-and-bound, model-improving, core-guided, IHS, …
▶ standard WCNF input format
▶ yearly MaxSAT solver evaluations

Success of MaxSAT
▶ Attractive alternative to other constrained optimization

paradigms
▶ Number of applications increasing
▶ Solver technology improving rapidly



Further Reading and Links
Talks at the Simons Institute
▶ Fahiem Bacchus on (complete) MaxSAT on April 1st.
▶ Jeremias on MaxSAT preprocessing on May 5th.

Surveys
▶ “Maximum Satisfiability” by Bacchus, Järvisalo & Martins

▶ Chapter in forthcoming vol. 2 of Handbook of Satisfiability
▶ Preprint available.

▶ Somewhat older surveys:
▶ Handbook chapter on MaxSAT: [Li and Manyà, 2009]
▶ Surveys on MaxSAT algorithms:

[Ansótegui, Bonet, and Levy, 2013]
[Morgado, Heras, Liffiton, Planes, and Marques-Silva, 2013]

MaxSAT Evaluations
https://maxsat-evaluations.github.io
Most recent report: [Bacchus, Järvisalo, and Martins, 2019]

https://maxsat-evaluations.github.io


Thank you for attending!
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