
Maximum Satisfiability Solving

Jeremias Berg Matti Järvisalo

University of Helsinki
Finland

April 13, 2021 Simons Institute / Online

Many thanks for Fahiem Bacchus and Ruben Martins for
contribution to earlier versions of these slides!

Maximum Satisfiability

Maximum Satisfiability—MaxSAT
Exact Boolean optimization paradigm
▶ Builds on the success story of Boolean satisfiability (SAT)

solving
▶ Great recent improvements in practical solver technology
▶ Expanding range of real-world applications

Offers an alternative to e.g. integer programming
▶ Solvers provide provably optimal solutions
▶ Propositional logic as the underlying declarative language:

especially suited for inherently “Boolean” optimization
problems

Outline

1. Motivation and basic concepts

2. MaxSAT solving:
Practical algorithms for MaxSAT

Success of SAT

The Boolean satisfiability (SAT) Problem
Input: A propositional logic formula F.
Task: Is F satisfiable?

SAT is a Great Success Story
Not merely a central problem in theory:
Remarkable improvements since mid 90s in SAT solvers:
practical decision procedures for SAT
▶ Find solutions if they exist
▶ Prove non-existence of solutions

Success of SAT

The Boolean satisfiability (SAT) Problem
Input: A propositional logic formula F.
Task: Is F satisfiable?

SAT is a Great Success Story
Not merely a central problem in theory:
Remarkable improvements since mid 90s in SAT solvers:
practical decision procedures for SAT
▶ Find solutions if they exist
▶ Prove non-existence of solutions

SAT Solvers

From 100s of variables and constraints (early 90s)
up to 10M variables and constraints. (21st century).

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

All Time Winners on SAT Competition 2020 Benchmarks

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●

●●●●
● ●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ● ●●●●

●●●●
●●●● ●● ●●●●

● ● ● ●

●●●●
●●●●
●●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
● ●●●●●

●●●●
●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●● ●●●● ●●● ●●● ● ●● ●● ● ●●●● ●●●●●
● ●●

●●●●
●●●●● ●●●●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●
●●●●
●●●●
●●●●●●

●●● ●●●●●● ● ●● ●●● ●●● ●●●● ●● ●●●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●

● ●●●●
●●●●●●●●●● ●●●●●● ●●●●

● ●●● ●●●●●
●● ● ●●●●● ●●●● ● ● ●●● ● ● ●●●

●●●●
●●● ●●● ●● ● ● ● ●● ●

●

●

●

●

●

kissat−2020
maple−lcm−disc−cb−dl−v3−2019
maple−lcm−dist−cb−2018
maple−lcm−dist−2017
maple−comsps−drup−2016
lingeling−2014
abcdsat−2015
lingeling−2013
glucose−2012
glucose−2011
precosat−2009
cryptominisat−2010
minisat−2008
minisat−2006
satelite−gti−2005
rsat−2007
berkmin−2003
zchaff−2004
limmat−2002

Plot provided by Armin Biere

Core NP search procedures for solving various types of
computational problems

SAT Solvers

From 100s of variables and constraints (early 90s)
up to 10M variables and constraints. (21st century).

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

All Time Winners on SAT Competition 2020 Benchmarks

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●

●●●●
● ●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ● ●●●●

●●●●
●●●● ●● ●●●●

● ● ● ●

●●●●
●●●●
●●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
● ●●●●●

●●●●
●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●● ●●●● ●●● ●●● ● ●● ●● ● ●●●● ●●●●●
● ●●

●●●●
●●●●● ●●●●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●
●●●●
●●●●
●●●●●●

●●● ●●●●●● ● ●● ●●● ●●● ●●●● ●● ●●●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●

● ●●●●
●●●●●●●●●● ●●●●●● ●●●●

● ●●● ●●●●●
●● ● ●●●●● ●●●● ● ● ●●● ● ● ●●●

●●●●
●●● ●●● ●● ● ● ● ●● ●

●

●

●

●

●

kissat−2020
maple−lcm−disc−cb−dl−v3−2019
maple−lcm−dist−cb−2018
maple−lcm−dist−2017
maple−comsps−drup−2016
lingeling−2014
abcdsat−2015
lingeling−2013
glucose−2012
glucose−2011
precosat−2009
cryptominisat−2010
minisat−2008
minisat−2006
satelite−gti−2005
rsat−2007
berkmin−2003
zchaff−2004
limmat−2002

Plot provided by Armin Biere

Core NP search procedures for solving various types of
computational problems

Optimization

Most real-world problems involve an optimization component
Examples:
▶ Find a shortest path/plan/execution/…to a goal state

▶ Planning, model checking, …
▶ Find a smallest explanation

▶ Debugging, configuration, …
▶ Find a least resource-consuming schedule

▶ Scheduling, logistics, …
▶ Find a most probable explanation (MAP)

▶ Probabilistic inference, …

High demand for automated approaches to
finding good solutions to computationally hard

optimization problems
⇝ Maximum satisfiability

Optimization

Most real-world problems involve an optimization component
Examples:
▶ Find a shortest path/plan/execution/…to a goal state

▶ Planning, model checking, …
▶ Find a smallest explanation

▶ Debugging, configuration, …
▶ Find a least resource-consuming schedule

▶ Scheduling, logistics, …
▶ Find a most probable explanation (MAP)

▶ Probabilistic inference, …

High demand for automated approaches to
finding good solutions to computationally hard

optimization problems
⇝ Maximum satisfiability

MaxSAT Applications

Drastically increasing number of successful applications
▶ Planning, Scheduling, and Configuration
▶ Data Analysis and Machine Learning
▶ Knowledge Representation and Reasoning
▶ Combinatorial Optimization
▶ Verification and Security
▶ Bioinformatics
▶ …

▶ Tens of new problem domains in MaxSAT Evaluations

This progress is much due to significant progress in efficient
MaxSAT solvers.

Progress in MaxSAT Solver Performance

 0

 100

 200

 300

 400

 0 600 1200 1800 2400 3000 3600

Ti
m

e
in

 s
ec

on
ds

Number of instances

Unweighted MaxSAT: Number x of instances solved in y seconds

MaxHS (2020)
RC2 (2018-19)

Open-WBO (2017)
WPM3 (2015-16)

Open-WBO (2014)
QMaxSAT (2013)
QMaxSAT (2012)
QMaxSAT (2011)
QMaxSAT (2010)

Comparing some of the best solvers from 2010–2020:
In 2020: 81% more instances solved than in 2010!
▶ On same computer, same set of benchmarks:

576 unweighted MaxSAT Evaluation 2020 instances

Basic Concepts

MaxSAT: Basic Definitions

MaxSAT
INPUT: a set of clauses F. (a CNF formula)
TASK: find τ s.t.

∑
C∈F

τ(C) is maximized.

Find truth assignment that satisfies a maximum number of clauses

This is the standard definition, much studied in Theoretical
Computer Science.
▶ Often inconvenient for modeling practical problems.

Central Generalizations of MaxSAT

Weighted MaxSAT
▶ Each clause C has an associated weight wC
▶ Optimal solutions maximize the sum of weights of satisfied

clauses: τ s.t.
∑
C∈F

wcτ(C) is maximized.

Partial MaxSAT
▶ Some clauses are deemed hard—infinite weights

▶ Any solution has to satisfy the hard clauses
⇝ Existence of solutions not guaranteed

▶ Clauses with finite weight are soft

Weighted Partial MaxSAT
Hard clauses (partial) + weights on soft clauses (weighted)

MaxSAT: Example

Shortest Path
Find shortest path in a grid with horizontal/vertical moves.
Travel from S to G.
Cannot enter blocked squares.

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example

▶ Note: Best solved with state-space search
▶ Used here to illustrate how MaxSAT solving algorithms

work and differ

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:

In CNF: unit hard clauses (S) and (G).

▶ A soft clause of weight 1 for all other squares:
In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”

MaxSAT: Example

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

▶ Note: Best solved with state-space search
▶ Used here to illustrate how MaxSAT solving algorithms

work and differ

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:

In CNF: unit hard clauses (S) and (G).

▶ A soft clause of weight 1 for all other squares:
In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”

MaxSAT: Example

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

▶ Note: Best solved with state-space search
▶ Used here to illustrate how MaxSAT solving algorithms

work and differ

▶ Boolean variables: one for each unblocked grid square
{S,G, a, b, . . . , u}: true iff path visits this square.

▶ Constraints:
▶ The S and G squares must be visited:

In CNF: unit hard clauses (S) and (G).
▶ A soft clause of weight 1 for all other squares:

In CNF: (¬a), (¬b), . . ., (¬u) “would prefer not to visit”

MaxSAT: Example

▶ Need to force the existence of a path between S and G by
additional hard clauses

A way to enforce a path between S and G:
▶ both S and G must have exactly one visited

neighbour
▶ Any path starts from S
▶ Any path ends at G

▶ other visited squares must have exactly two
visited neighbours
▶ One predecessor and one successor on the

path
S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example

▶ Need to force the existence of a path between S and G by
additional hard clauses

A way to enforce a path between S and G:
▶ both S and G must have exactly one visited

neighbour
▶ Any path starts from S
▶ Any path ends at G

▶ other visited squares must have exactly two
visited neighbours
▶ One predecessor and one successor on the

path
S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.

▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)

▶ For G: k + q + r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.
▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)

▶ For G: k + q + r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example
Constraint 1:
S and G must have exactly one visited neighbour.
▶ For S: a + b = 1

▶ In CNF: (a ∨ b), (¬a ∨ ¬b)
▶ For G: k + q + r = 1

▶ “At least one” in CNF : (k ∨ q ∨ r)
▶ “At most one” in CNF: (¬k ∨ ¬q), (¬k ∨ ¬r), (¬q ∨ ¬r)

disallow pairwise

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example

Constraint 2:
Other visited squares must have exactly two visited neighbours
▶ For example, for square e: e → (d + j + l + f = 2)

▶ Requires encoding the cardinality constraint d + j + l + f = 2 in
CNF

Encoding Cardinality Constraints in CNF
▶ An important class of constraints, occur

frequently in real-world problems
▶ A lot of work on CNF encodings of

cardinality constraints

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example

Constraint 2:
Other visited squares must have exactly two visited neighbours
▶ For example, for square e: e → (d + j + l + f = 2)

▶ Requires encoding the cardinality constraint d + j + l + f = 2 in
CNF

Encoding Cardinality Constraints in CNF
▶ An important class of constraints, occur

frequently in real-world problems
▶ A lot of work on CNF encodings of

cardinality constraints S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

MaxSAT: Example

S

G

a

c

h i

d

b g u

tf

rle

j k

n o p q

m

Properties of the encoding
▶ Every solution to the hard clauses is a

path from S to G that does not pass a
blocked square.

▶ Such a path will falsify one negative soft
clause for every square it passes through.
▶ orange path: assign 14 variables in

{S, a, c, h, . . . , t, r,G} to true
▶ MaxSAT solutions:

paths that pas through a minimum
number of squares (i.e., is shortest).
▶ green path: assign 8 variables in

{S, b, g, f, . . . , k,G} to true

MaxSAT: Complexity

Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSAT is FPNP–complete
▶ Polynomial number of oracle calls
▶ A SAT solver acts as the NP oracle most often in practice

MaxSAT: Complexity

Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSAT is FPNP–complete
▶ Polynomial number of oracle calls
▶ A SAT solver acts as the NP oracle most often in practice

Push-Button Solvers

▶ Black-box, no command line
parameters necessary

▶ Input: CNF formula, in the standard
DIMACS WCNF file format

▶ Output: provably optimal solution, or
UNSATISFIABLE
▶ Complete solvers

mancoosi-test-i2000d0u98-26.wcnf
p wcnf 18169 112632 31540812410
31540812410 -1 2 3 0
31540812410 -4 2 3 0
31540812410 -5 6 0
...
18170 1133 0
18170 457 0
... truncated 2.4 MB

Internally rely especially on CDCL SAT solvers
for proving unsatisfiability of subsets of clauses

Push-Button Solver Technology

Example: $ openwbo mancoosi-test-i2000d0u98-26.wcnf

c Open-WBO: a Modular MaxSAT Solver
c Version: 1.3.1 – 18 February 2015
...
c | Problem Type: Weighted
c | Number of variables: 18169
c | Number of hard clauses: 94365
c | Number of soft clauses: 18267
c | Parse time: 0.02 s
...
o 10548793370
c LB : 15026590
c Relaxed soft clauses 2 / 18267
c LB : 30053180
c Relaxed soft clauses 3 / 18267
c LB : 45079770
c Relaxed soft clauses 5 / 18267
c LB : 60106360

...
c Relaxed soft clauses 726 / 18267
c LB : 287486453
c Relaxed soft clauses 728 / 18267
o 287486453
c Total time: 1.30 s
c Nb SAT calls: 4
c Nb UNSAT calls: 841
s OPTIMUM FOUND
v 1 -2 3 4 5 6 7 8 -9 10 11 12 13 14 15 16 ...
... -18167 -18168 -18169 -18170

MaxSAT Evaluations

https://maxsat-evaluations.github.io

Objectives
▶ Assessing the state of the art in the field of MaxSAT solvers
▶ Collecting publicly available MaxSAT benchmark sets
▶ Various solvers from various research groups internationally

participate each year
▶ Standard input format
▶ Tracks for both complete and incomplete solvers

https://maxsat-evaluations.github.io

MaxSAT Solving:
Practical Algorithms for

MaxSAT

Types of MaxSAT Solvers

MaxSAT Solver
Practical implementation of an algorithm for finding (optimal)
solutions to MaxSAT instances

Complete vs Incomplete MaxSAT Solvers
▶ Complete:

Guaranteed to output a provably optimal solution to any
instance
(given enough resources (time & space))

▶ “Incomplete”:
Tailored to provide “good” solutions quickly
(potentially) no guarantees on optimality of solutions

Availability

Open Source
Starting from 2017, solvers need to be open-source in order to
participate in MaxSAT Evaluations
▶ Incentive for openness
▶ Allow other to build on and test new ideas on establish solver

source bases
https://maxsat-evaluations.github.io/

https://maxsat-evaluations.github.io/

Complete MaxSAT Solving

Types of Complete Solvers

▶ Branch and Bound
▶ Can be effective on small-but-hard & randomly generated

instances
▶ SAT-based MaxSAT algorithms

▶ Model-improving
▶ Core-guided
▶ Implicit hitting set

Focus here
▶ Complete solvers: Core-guided & implicit hitting set
▶ Incomplete: Combining different solving strategies

Model Improving: Upper Bound Search for MaxSAT

F

Find upper bound k for
#unsatisfied soft clauses

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT

Model Improving: Upper Bound Search for MaxSAT

F

Can we unsatisfy
less than k clauses?

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT

F⇝ F′

Model Improving: Upper Bound Search for MaxSAT

F′

Can we unsatisfy less
than j (< k) clauses?

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT

Model Improving: Upper Bound Search for MaxSAT

F′′

Can we unsatisfy less
than j (< k) clauses?

SAT Solver

Unsatisfiable
subformula

Satisfying
assignment Refinement

Optimal
Solution

UNSAT

SAT

Model-Improving MaxSAT Solving
▶ Model-improving can be very efficient when:

▶ The number of soft clauses is small
▶ The optimal solution corresponds to unsatisfying the majority

of soft clauses

▶ Example of state-of-the-art solvers that use this algorithm:
▶ QMaxSAT [Koshimura, Zhang, Fujita, and Hasegawa, 2012]
▶ Pacose [Paxian, Reimer, and Becker, 2018]

▶ Also applied in incomplete MaxSAT solving — more on this
later!

▶ Challenges:
▶ Constraint that restricts the UB grows with the number of soft

clauses (weights of the soft clauses)

Core-Guided MaxSAT
Solving

Lower Bound Search for MaxSAT

F

Can we satisfy all
soft clauses?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

Lower Bound Search for MaxSAT

F

Can we satisfy all
soft clauses?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

F⇝ F′

Lower Bound Search for MaxSAT

F′

Can we satisfy all
soft clauses but 1?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

Lower Bound Search for MaxSAT

F′

Can we satisfy all
soft clauses but 1?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

F′ ⇝ F′′

Lower Bound Search for MaxSAT

F′′

Can we satisfy all
soft clauses but 2?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

Lower Bound Search for MaxSAT

F′′

Can we satisfy all
soft clauses but 2?

SAT Solver

Satisfying
assignment

Unsatisfiable
subformula Refinement

Optimal
Solution

SAT

UNSAT

Unsatisfiability-based search for MaxSAT
▶ Simple idea:

▶ For LB = 0, . . ., query SAT solver on
H ∧ S ∧ CostLessThan(LB)

▶ Iterate until SAT solver reports satisfiable
▶ The first model found will be optimal.

▶ Challenges:

▶ Incrementality, i.e. maintaining information across iterations
▶ Constraint that restricts the LB grows with the number of soft

clauses (weights of the soft clauses)

▶ No existing solver uses this algorithm

▶ Alternatives:

▶ Change the refinement procedure to relax soft clauses lazily:

▶ Use unsat cores to only consider a subset of the soft clauses
▶ Constraint that restricts the LB will be much smaller
▶ Can scale to problems with millions of soft clauses

Unsatisfiability-based search for MaxSAT
▶ Simple idea:

▶ For LB = 0, . . ., query SAT solver on
H ∧ S ∧ CostLessThan(LB)

▶ Iterate until SAT solver reports satisfiable
▶ The first model found will be optimal.

▶ Challenges:
▶ Incrementality, i.e. maintaining information across iterations
▶ Constraint that restricts the LB grows with the number of soft

clauses (weights of the soft clauses)

▶ No existing solver uses this algorithm

▶ Alternatives:

▶ Change the refinement procedure to relax soft clauses lazily:

▶ Use unsat cores to only consider a subset of the soft clauses
▶ Constraint that restricts the LB will be much smaller
▶ Can scale to problems with millions of soft clauses

Unsatisfiability-based search for MaxSAT
▶ Simple idea:

▶ For LB = 0, . . ., query SAT solver on
H ∧ S ∧ CostLessThan(LB)

▶ Iterate until SAT solver reports satisfiable
▶ The first model found will be optimal.

▶ Challenges:
▶ Incrementality, i.e. maintaining information across iterations
▶ Constraint that restricts the LB grows with the number of soft

clauses (weights of the soft clauses)

▶ No existing solver uses this algorithm

▶ Alternatives:
▶ Change the refinement procedure to relax soft clauses lazily:

▶ Use unsat cores to only consider a subset of the soft clauses
▶ Constraint that restricts the LB will be much smaller
▶ Can scale to problems with millions of soft clauses

Unsatisfiable subformula — UNSAT Cores

Formula:

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

▶ Formula is unsatisfiable

▶ Unsatisfiable subformula (core):
▶ F′ ⊆ F, such that F′ is unsatisfiable

▶ Subset of soft clauses which together with the hard clauses
constitute an unsatisfiable CNF formulas

H = {. . . , (S), (S → (a + b = 1), . . .}
κ = {(¬a), (¬b)} ⊂ S
SAT-Solve(H ∧ κ) =UNSAT

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Unsatisfiable subformula — UNSAT Cores

Formula:

x1 x3 x2 ∨ ¬x1 ¬x3 ∨ x1 ¬x2 ∨ ¬x1 x2 ∨ ¬x3

▶ Formula is unsatisfiable
▶ Unsatisfiable subformula (core):

▶ F′ ⊆ F, such that F′ is unsatisfiable
▶ Subset of soft clauses which together with the hard clauses

constitute an unsatisfiable CNF formulas

H = {. . . , (S), (S → (a + b = 1), . . .}
κ = {(¬a), (¬b)} ⊂ S
SAT-Solve(H ∧ κ) =UNSAT

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Unsatisfiable subformula — UNSAT Cores

Formula:
▶ Formula is unsatisfiable
▶ Unsatisfiable subformula (core):

▶ F′ ⊆ F, such that F′ is unsatisfiable
▶ Subset of soft clauses which together with the hard clauses

constitute an unsatisfiable CNF formulas

H = {. . . , (S), (S → (a + b = 1), . . .}
κ = {(¬a), (¬b)} ⊂ S
SAT-Solve(H ∧ κ) =UNSAT

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

▶ Various different core-guided solvers proposed.
▶ Focus here on a high-level view on how to use cores:

▶ Relax cores together.
▶ Relax cores separately.

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

▶ Various different core-guided solvers proposed.
▶ Focus here on a high-level view on how to use cores:

▶ Relax cores together.

▶ Relax cores separately.

Core-Guided Algorithms
Timeline

2006
Fu-Malik

2007
MSU3

2009
WBO
WPM1

2010
WPM2

2011
BCD

2014
OpenWBO
Eva
OLL

2015
OpenWBO.RES
WPM3
Maxino

2018
RC2

2019
UWrMaxSat

2020
EvalMaxSAT

▶ Various different core-guided solvers proposed.
▶ Focus here on a high-level view on how to use cores:

▶ Relax cores together.
▶ Relax cores separately.

Relax Cores together - MSU3
Shortest Path

Intuition

1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R
3. Otherwise, an optimal model τ has been found

LB = 0,R = {}

LB = 1,R = {a, b}LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits no nodes
from the set R?

SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits at most 5 nodes
from the set R?

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relax Cores together - MSU3
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable

2. If it is unsatisfiable, then increase LB and update R
3. Otherwise, an optimal model τ has been found

LB = 0,R = {}

LB = 1,R = {a, b}LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}

SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits no nodes
from the set R?

SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits at most 5 nodes
from the set R?

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relax Cores together - MSU3
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R

3. Otherwise, an optimal model τ has been found

LB = 0,R = {}

LB = 1,R = {a, b}LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits no nodes
from the set R?

SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits at most 5 nodes
from the set R?

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}

Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relax Cores together - MSU3
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R

3. Otherwise, an optimal model τ has been found

LB = 0,R = {}

LB = 1,R = {a, b}

LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits no nodes
from the set R?

SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits at most 1 nodes
from the set R?

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relax Cores together - MSU3
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R

3. Otherwise, an optimal model τ has been found

LB = 0,R = {}LB = 1,R = {a, b}

LB = 1,R = {a, b}

LB = {2, . . . 5},R = {a, b, c, g, . . .}LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits no nodes
from the set R?

SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits at most 5 nodes
from the set R?

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}

Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}

Formula is unsatisfiableτ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relax Cores together - MSU3
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R

3. Otherwise, an optimal model τ has been found

LB = 0,R = {}LB = 1,R = {a, b}LB = 1,R = {a, b}

LB = {2, . . . 5},R = {a, b, c, g, . . .}

LB = 6,R = {a, b, . . .}
SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits no nodes
from the set R?

SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))

SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits at most 5 nodes
from the set R?

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}

Formula is unsatisfiable

τ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relax Cores together - MSU3
Shortest Path

Intuition
1. Check if H ∧ S ∧ CostLessThan(R, LB) is satisfiable
2. If it is unsatisfiable, then increase LB and update R
3. Otherwise, an optimal model τ has been found

LB = 0,R = {}LB = 1,R = {a, b}LB = 1,R = {a, b}LB = {2, . . . 5},R = {a, b, c, g, . . .}

LB = 6,R = {a, b, . . .}

SAT-SOLVE(H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits no nodes
from the set R?

SAT-SOLVE(H ∧ S ∧ CostLessThan(R, LB))SAT-SOLVE (H ∧ S ∧ CostLessThan(R,LB))

is there a path that visits at most 5 nodes
from the set R?

SAT-SOLVE (H ∧ S ∧ CostLessThan(R, LB))

Formula is unsatisfiable
Use unsat core to update R = {a, b}
Formula is unsatisfiable
Use unsat core to update R = {a, b, c, g}
Formula is unsatisfiable

τ = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

MSU3 Core-Guided Algorithm
Summary

▶ MSU3 algorithm can be very efficient when:
▶ The size of the cores found at each iteration are small
▶ The optimal solution corresponds to satisfying the majority of

soft clauses

▶ Example of state-of-the-art solvers that use this algorithm:
▶ Open-WBO [Martins, Manquinho, and Lynce, 2014]

▶ Challenges:
▶ Constraint that restricts the LB grows with the size of cores
▶ Does not capture local core information

MSU3

No Local Information:
▶ In the third iteration, we are asking for a path that satisfies

a + b + c + g ≤ 2

▶ Based on the cores we know a + b ≤ 1 and c + g ≤ 1

LB = 2,R = {a, b, c, g}

{(¬a), (¬b)} is a core
→ all paths go through a or b

{(¬c), (¬g)} is a core
→ all paths go through c or g

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Alternative:
Relax each core separately

MSU3

No Local Information:
▶ In the third iteration, we are asking for a path that satisfies

a + b + c + g ≤ 2
▶ Based on the cores we know a + b ≤ 1 and c + g ≤ 1

LB = 2,R = {a, b, c, g}

{(¬a), (¬b)} is a core
→ all paths go through a or b

{(¬c), (¬g)} is a core
→ all paths go through c or g

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Alternative:
Relax each core separately

MSU3

No Local Information:
▶ In the third iteration, we are asking for a path that satisfies

a + b + c + g ≤ 2
▶ Based on the cores we know a + b ≤ 1 and c + g ≤ 1

LB = 2,R = {a, b, c, g}

{(¬a), (¬b)} is a core
→ all paths go through a or b

{(¬c), (¬g)} is a core
→ all paths go through c or g

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Alternative:
Relax each core separately

Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S

2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable

3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅

LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅

LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}

κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅

LB = 1, i = 1, K = {κ0}

LB = 2, i = 2, K = {κ0, κ1}LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅

LB = 1, i = 1, K = {κ0}

LB = 2, i = 2, K = {κ0, κ1}LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core:

κ0 = {(¬a), (¬b)}

κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅LB = 1, i = 1, K = {κ0}

LB = 2, i = 2, K = {κ0, κ1}

LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}

LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}

LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Relaxing Cores Separately
Shortest path

Intuition
1. Initialise H0 = H and S0 = S
2. For i = 0, . . . check if Hi ∧ Si is satisfiable
3. If not, relax Hi and Si

4. Otherwise, the obtained model is optimal

LB = 0, i = 0, K = ∅LB = 1, i = 1, K = {κ0}LB = 2, i = 2, K = {κ0, κ1}

LB = 6, i = 6, K = {κ0, κ1, κ2, κ3, κ4, κ5}

SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)SAT-SOLVE(Hi ∧ Si)

is there a path that visits at most 1 node
from each found core

Formula is unsatisfiable
Obtain new core: κ0 = {(¬a), (¬b)}κ1 = {(¬q), (¬k), (¬r)}

Formula is satisfiable
Obtain optimal model: τ = {b, . . . , l, r,¬a, . . . ,¬q}
cost(τ) = 6

Note:
LB and K maintained only implicitly

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Separate Core relaxation
Summary

▶ First instantiated by Fu-Malik [Fu and Malik, 2006]

▶ Other early instantiations in WBO, and WPM1
[Manquinho, Marques-Silva, and Planes, 2009; Ansótegui, Bonet, and Levy,

2009]

▶ Today, most solvers use OLL [Andres, Kaufmann, Matheis, and Schaub,
2012; Morgado, Dodaro, and Marques-Silva, 2014]

▶ Benefits:

▶ Encoding cardinality constraints into CNF is efficient since it
only uses AtMost 1 constraints

▶ Challenges:

▶ Multiple cardinality constraints
▶ Extracting cores from reformulated formula can be

exponentially harder [Bacchus and Narodytska, 2014]

Separate Core relaxation
Summary

▶ First instantiated by Fu-Malik [Fu and Malik, 2006]

▶ Other early instantiations in WBO, and WPM1
[Manquinho, Marques-Silva, and Planes, 2009; Ansótegui, Bonet, and Levy,

2009]

▶ Today, most solvers use OLL [Andres, Kaufmann, Matheis, and Schaub,
2012; Morgado, Dodaro, and Marques-Silva, 2014]

▶ Benefits:
▶ Encoding cardinality constraints into CNF is efficient since it

only uses AtMost 1 constraints

▶ Challenges:

▶ Multiple cardinality constraints
▶ Extracting cores from reformulated formula can be

exponentially harder [Bacchus and Narodytska, 2014]

Separate Core relaxation
Summary

▶ First instantiated by Fu-Malik [Fu and Malik, 2006]

▶ Other early instantiations in WBO, and WPM1
[Manquinho, Marques-Silva, and Planes, 2009; Ansótegui, Bonet, and Levy,

2009]

▶ Today, most solvers use OLL [Andres, Kaufmann, Matheis, and Schaub,
2012; Morgado, Dodaro, and Marques-Silva, 2014]

▶ Benefits:
▶ Encoding cardinality constraints into CNF is efficient since it

only uses AtMost 1 constraints

▶ Challenges:
▶ Multiple cardinality constraints
▶ Extracting cores from reformulated formula can be

exponentially harder [Bacchus and Narodytska, 2014]

Implicit Hitting Set Algorithms
for MaxSAT

[Davies and Bacchus, 2011, 2013b,a]

Hitting Sets and UNSAT Cores

Hitting Sets
Given a collection S of sets of elements,
A set hs is a hitting set of S if hs ∩ s 6= ∅ for all s ∈ S.
A hitting set hs is optimal if no hs′ ⊂

∪
S with |hs′| < |hs| is a

hitting set of S.

What does this have to do with MaxSAT?
For any MaxSAT instance F:
for any optimal hitting set hs of the set of UNSAT cores of F,
there is an optimal solutions τ to F such that τ satisfies exactly
the clauses F \ hs.

Hitting Sets and UNSAT Cores

Hitting Sets
Given a collection S of sets of elements,
A set hs is a hitting set of S if hs ∩ s 6= ∅ for all s ∈ S.
A hitting set hs is optimal if no hs′ ⊂

∪
S with |hs′| < |hs| is a

hitting set of S.

What does this have to do with MaxSAT?
For any MaxSAT instance F:
for any optimal hitting set hs of the set of UNSAT cores of F,
there is an optimal solutions τ to F such that τ satisfies exactly
the clauses F \ hs.

Hitting Sets and UNSAT Cores

Key insight
To find an optimal solution to a MaxSAT instance F,
it suffices to:
▶ Find an (implicit) hitting set hs of the UNSAT cores of F.

▶ Implicit refers to not necessarily having all MUSes of F.
▶ Find a solution to F \ hs.

Implicit Hitting Set Approach to MaxSAT
Iterate over the following steps:
▶ Accumulate a collection K of UNSAT cores

using a SAT solver
▶ Find an optimal hitting set hs over K,

and rule out the clauses in hs for the next SAT solver call
using an IP solver

…until the SAT solver returns satisfying assignment.

Hitting Set Problem as Integer Programming

min
∑

C∈∪K
c(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function c: works also for weighted MaxSAT

Implicit Hitting Set Approach to MaxSAT
Iterate over the following steps:
▶ Accumulate a collection K of UNSAT cores

using a SAT solver
▶ Find an optimal hitting set hs over K,

and rule out the clauses in hs for the next SAT solver call
using an IP solver

…until the SAT solver returns satisfying assignment.
Hitting Set Problem as Integer Programming

min
∑

C∈∪K
c(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function c: works also for weighted MaxSAT

Implicit Hitting Set Approach to MaxSAT

“Best out of both worlds”
Combining the main strengths of SAT and IP solvers:
▶ SAT solvers are very good at proving unsatisfiability

▶ Provide explanations for unsatisfiability in terms of cores
▶ Instead of adding clauses to / modifying the input MaxSAT

instance:
each SAT solver call made on a subset of the clauses in the
instance

▶ IP solvers at optimization
▶ Instead of directly solving the input MaxSAT instance:

solve a sequence of simpler hitting set problems over the cores

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

H, S
hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

1. Initialize
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

2. UNSAT core
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

3. Update core set
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

4. Min-cost HS of K
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

5. UNSAT core
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Input:
hard clauses H, soft clauses S, weight function c : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

Solving MaxSAT by SAT and Hitting Set Computations

Intuition: After optimally hitting all cores of H ∧ S by hs:
any solution to H ∧ (S \ hs) is guaranteed to be optimal.

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

H ∧ (S \ hs)

IP solver
min

∑
C∈∪K c(C) · bC∑

C∈K bC ≥ 1 ∀K ∈ K

c

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅

K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}

hs = ∅

hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅

K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}

hs = ∅

hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅

K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}

hs = ∅

hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅

IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅

K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}

hs = ∅

hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))

SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅

K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}

hs = ∅

hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}SAT-Solve(H ∧ (S \ hs))

SAT-Solve(H ∧ (S \ hs))
is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}
hs = ∅

hs = {(¬q)}

hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅

IP-solve(K) = {(¬q)}

IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}
hs = ∅hs = {(¬q)}

hs = {(¬q)}

hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))

SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?

SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}

K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}
hs = ∅hs = {(¬q)}

hs = {(¬q)}

hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?
SAT-Solve(H ∧ (S \ hs))

SAT-Solve(H ∧ (S \ hs))
is there a path that only goes through q?

SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r

Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}
hs = ∅hs = {(¬q)}hs = {(¬q)}

hs = {(¬k), (¬a)}

hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}

IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}

hs = {(¬k), (¬a)}

hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}

IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}

hs = {(¬b), (¬g), (¬r)}

hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}

IP-solve(K) = {(¬b), (¬g), (¬r)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}

hs = {(¬b), (¬g), (¬r)}

hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}

IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}

hs = {(¬b), (¬c), (¬f), (¬k)}

hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}

IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}

hs = {(¬b), (¬c), (¬f), (¬k)}

hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}

IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}

hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}

IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}

hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}

IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}

IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}

K = {κ1, . . .}

hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?

SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b

Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

MaxSAT by SAT and Hitting Set Computation
Shortest Path

Intuition
Hitting sets provide candidate paths.
Sat solver verifies the candidates.

K = ∅K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {{(¬q), (¬k), (¬r)}, {(¬a), (¬b)}}K = {κ1, . . .}
hs = ∅hs = {(¬q)}hs = {(¬q)}hs = {(¬k), (¬a)}hs = {(¬k), (¬a)}hs = {(¬b), (¬g), (¬r)}hs = {(¬b), (¬c), (¬f), (¬k)}hs = {(¬b), (¬c), (¬d), (¬j), (¬r)}hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

IP-solve(K) = ∅IP-solve(K) = {(¬q)}IP-solve(K) = {(¬k), (¬a)}

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path via no nodes?

SAT-Solve(H ∧ (S \ hs))SAT-Solve(H ∧ (S \ hs))

is there a path that only goes through q?
SAT-Solve(H ∧ (S \ hs))
is there a path that through a, c, d, e, l, r?

Result: UNSAT Core: {(¬q), (¬k), (¬r)}
i.e. all paths go through q, k or r
Result: UNSAT Core: {(¬a), (¬b)}
i.e. all paths go through a or b
Result: SAT
τ = {a, c, . . . , r,¬b,¬h, . . . ,¬q}
cost(τ) = 6

SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬c), (¬g)}IP-solve(K) = {(¬b), (¬g), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬h), (¬d), (¬f), (¬m)}IP-solve(K) = {(¬b), (¬c), (¬f).(¬f)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬p), (¬j), (¬l), (¬t)}IP-solve(K) = {(¬b), (¬c), (¬d), (¬j), (¬r)}SAT-Solve(H ∧ (S \ hs)) = UNSAT
Core: {(¬n), (¬i), (¬e), (¬u)}
IP-solve(K) =

{(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q Note:
Termination requires computing the
correct hitting set

hs = {(¬a), (¬c), (¬d), (¬e), (¬l), (¬r)}
hs = {(¬a), (¬g), (¬f), (¬i), (¬p), (¬q)}
hs = {(¬b), (¬c), (¬m), (¬i), (¬j), (¬r)}
...

Optimizations in Solvers

Solvers implementing the implicit hittings set approach include
several optimizations, such as
▶ a disjoint phase for obtaining several cores before/between

hitting set computations,
combinations of greedy and exact hitting sets computations

[Davies and Bacchus, 2011, 2013b,a; Saikko, Berg, and Järvisalo, 2016]

▶ LP-solving techniques such as reduced cost fixing
[Bacchus, Hyttinen, Järvisalo, and Saikko, 2017]

▶ abstract cores [Berg, Bacchus, and Poole, 2020]

▶ …

Some of these optimizations are integral for making the solvers
competitive.

Implicit Hitting Set

▶ Effective on range of MaxSAT problems including large ones.
▶ Superior to other methods when there are many distinct

weights.
▶ Usually superior to CPLEX.

Incomplete MaxSAT Solving

Why Incomplete Solving?

▶ Scalability
▶ Proving optimality often the most challenging step of

complete algorithms
▶ Proofs of optimality not always necessary

▶ Finding good solutions fast

From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.
▶ Essentially all complete solvers can be seen as incomplete

solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?

From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm

▶ However: also most implementations of core-guided and IHS
algorithms.

▶ Essentially all complete solvers can be seen as incomplete
solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?

From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.

▶ Essentially all complete solvers can be seen as incomplete
solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?

From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.
▶ Essentially all complete solvers can be seen as incomplete

solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?

From Complete to Incomplete MaxSAT Solving

Any-time algorithms
▶ Find intermediate (non-optimal) solutions during search.

▶ Simple example: model-improving algorithm
▶ However: also most implementations of core-guided and IHS

algorithms.
▶ Essentially all complete solvers can be seen as incomplete

solvers.

Central Question
How to combine or improve the algorithms in order to obtain good
solutions faster?

(Some of the) solvers in the latest evaluation

Solver SLS Model Improving Core-Guided SAT-based SLS Other
Loandra x x
StableResolver x x
TT-Open-WBO-Inc x
sls-mcs x x
sls-lsu
SATLike-c x x x
Open-WBO-Inc-complete x x x
Open-WBO-Inc-satlike x x x

Take Home Message
Effective incomplete solvers make use of several different
algorithms.

(Some of the) solvers in the latest evaluation

Solver SLS Model Improving Core-Guided SAT-based SLS Other
Loandra x x
StableResolver x x
TT-Open-WBO-Inc x
sls-mcs x x
sls-lsu
SATLike-c x x x
Open-WBO-Inc-complete x x x
Open-WBO-Inc-satlike x x x

Take Home Message
Effective incomplete solvers make use of several different
algorithms.

Approaches to Incomplete MaxSAT

Model-Improving Search
How to improve the model-improving algorithm for incomplete
search.
complete & any-time

Core-Boosted search
Combine core-guided and model-improving search.
complete & any-time

Stochastic Local Search (SLS)
Quickly traverse the search space by local changes to current
solution
Improved with a SAT solver
incomplete

Model-Improving Search

Model-Improving Algorithm
Shortest Path

Intuition

1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞

UB = 10UB = 10UB = 8UB = 8UB = 6
SAT-SOLVE(H)SAT-SOLVE(H)SAT-SOLVE (H ∧ CostLessThan(S,UB))SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞

UB = 10UB = 10UB = 8UB = 8UB = 6

SAT-SOLVE(H)

SAT-SOLVE(H)SAT-SOLVE (H ∧ CostLessThan(S,UB))SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB

3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞

UB = 10

UB = 10UB = 8UB = 8UB = 6
SAT-SOLVE(H)

SAT-SOLVE(H)

SAT-SOLVE (H ∧ CostLessThan(S,UB))SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10

τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞UB = 10

UB = 10

UB = 8UB = 8UB = 6
SAT-SOLVE(H)SAT-SOLVE(H)

SAT-SOLVE (H ∧ CostLessThan(S,UB))

SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞UB = 10UB = 10

UB = 8

UB = 8UB = 6
SAT-SOLVE(H)SAT-SOLVE(H)SAT-SOLVE (H ∧ CostLessThan(S,UB))

SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10

τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8

τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞UB = 10UB = 10UB = 8

UB = 8

UB = 6
SAT-SOLVE(H)SAT-SOLVE(H)

SAT-SOLVE (H ∧ CostLessThan(S,UB))

SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8
τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Algorithm
Shortest Path

Intuition
1. Obtain a solution τ∗

2. Update UB
3. Improve τ∗ until τ∗ is proven to be optimal

UB = ∞UB = 10UB = 10UB = 8UB = 8

UB = 6

SAT-SOLVE(H)SAT-SOLVE(H)SAT-SOLVE (H ∧ CostLessThan(S,UB))

SAT-SOLVE (H ∧ CostLessThan(S,UB))

τ 1 = {S, a, c, d, e, f, g,m, u, t, r,G,¬b,¬l, . . . ,¬q}
cost(τ 1) = 10
τ 2 = {S, a, c, h, i, j, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 2) = 8

τ 3 = {S, a, c, d, e, l, r,G,¬b,¬g, . . . ,¬q}
cost(τ 3) = 6

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:

▶ Rescale weights.
▶ Core-Boosted Search

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S = {(C1, 100), (C2, 101), (C3, 123), (C4, 1205), (C5, 1540), (C6, 1260) . . .}

S = {(C1, 1), (C2, 1), (C3, 1), (C4, 12), (C5, 15), (C6, 12) . . .}

Divide by 100

S = {(C1, 100), (C2, 101), (C3, 123), (C4, 1205), (C5, 1540), (C6, 1260) . . .}

S = {(C4, 2), (C5, 3), (C6, 2) . . .}

Divide by 500

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Rescale weights.

▶ Core-Boosted Search

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S = {(C1, 100), (C2, 101), (C3, 123), (C4, 1205), (C5, 1540), (C6, 1260) . . .}

S = {(C1, 1), (C2, 1), (C3, 1), (C4, 12), (C5, 15), (C6, 12) . . .}

Divide by 100

S = {(C1, 100), (C2, 101), (C3, 123), (C4, 1205), (C5, 1540), (C6, 1260) . . .}

S = {(C4, 2), (C5, 3), (C6, 2) . . .}

Divide by 500

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Rescale weights.

▶ Core-Boosted Search

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S = {(C1, 100), (C2, 101), (C3, 123), (C4, 1205), (C5, 1540), (C6, 1260) . . .}

S = {(C1, 1), (C2, 1), (C3, 1), (C4, 12), (C5, 15), (C6, 12) . . .}

Divide by 100

S = {(C1, 100), (C2, 101), (C3, 123), (C4, 1205), (C5, 1540), (C6, 1260) . . .}

S = {(C4, 2), (C5, 3), (C6, 2) . . .}

Divide by 500

Model-Improving Incomplete Search
Joshi et al. [2018]; Demirovic and Stuckey [2019]

Key Challenges
▶ Encoding of CostLessThan(S,UB) can be (and often is)

large
▶ Especially with weights.

▶ Proposed Improvements:
▶ Rescale weights.
▶ Core-Boosted Search

SAT-SOLVE (H ∧ CostLessThan(S,UB))

Size depends on:
number of soft clauses,
diversity of weights, and UB

S = {(C1, 100), (C2, 101), (C3, 123), (C4, 1205), (C5, 1540), (C6, 1260) . . .}

S = {(C1, 1), (C2, 1), (C3, 1), (C4, 12), (C5, 15), (C6, 12) . . .}

Divide by 100

S = {(C1, 100), (C2, 101), (C3, 123), (C4, 1205), (C5, 1540), (C6, 1260) . . .}

S = {(C4, 2), (C5, 3), (C6, 2) . . .}

Divide by 500

Core-Boosted Search

Core-Boosted Search
Shortest path [Berg, Demirovic, and Stuckey, 2019]

Intuition
1. Solutions to F = (H0, S0) → shortest paths from S to G

2. Solutions to F2 = (H2, S2) → shortest paths from κ0 to κ1

LB = 0, i = 0, K = ∅

LB = 2, i = 2, K = {κ0, κ1}

MAXSAT-SOLVE(Hi ∧ Si)

cost(F) = 6

What is the length of the shortest path
from S to G?

What is the length of the shortest path
from a or b to q, k, or r?

cost(F2) = 4

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Core-Boosted Search
Shortest path [Berg, Demirovic, and Stuckey, 2019]

Intuition
1. Solutions to F = (H0, S0) → shortest paths from S to G
2. Solutions to F2 = (H2, S2) → shortest paths from κ0 to κ1

LB = 0, i = 0, K = ∅

LB = 2, i = 2, K = {κ0, κ1}

MAXSAT-SOLVE(Hi ∧ Si)

cost(F) = 6

What is the length of the shortest path
from S to G?

What is the length of the shortest path
from a or b to q, k, or r?

cost(F2) = 4

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Bottleneck
Core-extraction gets
more difficult over time

Bottleneck
Size of PB constraint
depends on the UB

Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Bottleneck
Core-extraction gets
more difficult over time

Bottleneck
Size of PB constraint
depends on the UB

Core-Boosted Linear Search
In General

Solving: F

Core-Guided(F)

Input

return: τ⋆

Optimum found

Model-Improve(F⋆, τ⋆)

CG-resources out
(F⋆, τ⋆)

return: τ⋆

Optimum found or
resources out

Bottleneck
Core-extraction gets
more difficult over time

Bottleneck
Size of PB constraint
depends on the UB

Core-Boosted search
Example

 100000

 0 50 100 150 200 250 300

Time (s)

Core-Boosted30s
Core-Guided

Linear-Search

Ga
p

(U
B

-L
B)

Further improvements by including
SLS prior to core-guided phase.
State-of-the-art performance
(in 2020) on unweighted instances.

Core-Boosted search
Example

 100000

 0 50 100 150 200 250 300

Time (s)

Core-Boosted30s
Core-Guided

Linear-Search

Ga
p

(U
B

-L
B) Further improvements by including

SLS prior to core-guided phase.
State-of-the-art performance
(in 2020) on unweighted instances.

Stochastic Local Search for MaxSAT

SLS for MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Key challenges
▶ How to guarantee that solutions satisfy hard clauses?
▶ How to make use of the weights?

Proposed solutions:

▶ Extend weights to all clauses

▶ Initialize weight of all hard clauses to 1
▶ Flip literals from unsatisfied clauses with high weight.
▶ Periodically increase weights of clauses that are frequently

unsatisfied.

▶ Use a SAT solver to satisfy the hard clauses

SLS for MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Key challenges
▶ How to guarantee that solutions satisfy hard clauses?
▶ How to make use of the weights?

Proposed solutions:
▶ Extend weights to all clauses

▶ Initialize weight of all hard clauses to 1
▶ Flip literals from unsatisfied clauses with high weight.
▶ Periodically increase weights of clauses that are frequently

unsatisfied.
▶ Use a SAT solver to satisfy the hard clauses

SLS for MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Key challenges
▶ How to guarantee that solutions satisfy hard clauses?
▶ How to make use of the weights?

Proposed solutions:
▶ Extend weights to all clauses

▶ Initialize weight of all hard clauses to 1
▶ Flip literals from unsatisfied clauses with high weight.
▶ Periodically increase weights of clauses that are frequently

unsatisfied.

▶ Use a SAT solver to satisfy the hard clauses

SLS for MaxSAT
Cai et al. [2016]; Luo et al. [2017]

Key challenges
▶ How to guarantee that solutions satisfy hard clauses?
▶ How to make use of the weights?

Proposed solutions:
▶ Extend weights to all clauses

▶ Initialize weight of all hard clauses to 1
▶ Flip literals from unsatisfied clauses with high weight.
▶ Periodically increase weights of clauses that are frequently

unsatisfied.
▶ Use a SAT solver to satisfy the hard clauses

SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬a), (¬b), (¬c), . . .}S = {(¬b), (¬c), (¬d), . . .}S = {(¬c), (¬d), (¬e), . . .}

UB = 10

UB = 6UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}S = {(¬c), (¬d), (¬e), . . .}

UB = 10

UB = 6UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))
Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}S = {(¬c), (¬d), (¬e), . . .}

UB = 10

UB = 6UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0
SATSOLVE(H ∧

∧
C∈FIXED C ∧ (¬a))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))
Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}S = {(¬c), (¬d), (¬e), . . .}

UB = 10

UB = 6

UB = 6
τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}

S = {(¬c), (¬d), (¬e), . . .}

UB = 10UB = 6

UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))
Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}

S = {(¬c), (¬d), (¬e), . . .}

UB = 10UB = 6

UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0
SATSOLVE(H ∧

∧
C∈FIXED C ∧ (¬b))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))
Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}S = {(¬a), (¬b), (¬c), . . .}

S = {(¬b), (¬c), (¬d), . . .}

S = {(¬c), (¬d), (¬e), . . .}

UB = 10UB = 6

UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}S = {(¬a), (¬b), (¬c), . . .}S = {(¬b), (¬c), (¬d), . . .}

S = {(¬c), (¬d), (¬e), . . .}

UB = 10UB = 6

UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

S = {(¬a), (¬b), (¬c), . . .}S = {(¬a), (¬b), (¬c), . . .}S = {(¬b), (¬c), (¬d), . . .}

S = {(¬c), (¬d), (¬e), . . .}

UB = 10UB = 6

UB = 6

τ∗ = {S, a, c, . . . ,G,¬b,¬l, . . . ,¬q}
cost(τ∗) = 10
FIXED = ∅

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b)}

τ∗ = {S, b, g, f, e, l, k,G,¬a,¬c,¬d, . . . ,¬q}
cost(τ∗) = 6
FIXED = {(¬a), (b), (¬c)}

Current: (¬a) τ∗(¬a) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬a))

Current: (¬b) τ∗(¬b) = 0

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

SATSOLVE(H ∧
∧

C∈FIXED C ∧ (¬b))

Current: (¬c) τ∗(¬c) = 0

2, 4

1, 1 3, 1

S b g m u

a ? f ? t

c d e l r

h i j k G

n o ? p q

SLS with a SAT solver
Nadel [2018, 2019]

Intuition
1. Obtain any solution τ∗

2. Improve τ∗ by enforcing the satisfaction of an increasing
subset of soft clauses.

Further improvements by more sophisticated ways of
ordering soft clauses

State-of-the-art performance on weighted instances

Incomplete MaxSAT
Summary

▶ Incomplete MaxSAT solving seeks to address scalability
without sacrificing solution quality (too much)

▶ Several different approaches developed in recent years
▶ Orthogonal performance on different domains.
▶ Best solvers combine several different algorithms

Take Home Message - Which solver to choose?
Short answer: Depends on the domain.
Longer answer (in 2021): Try TT-Open-WBO-Inc for weighted and
SATLike (2020 version) or Loandra for unweighted.

Incomplete MaxSAT
Summary

▶ Incomplete MaxSAT solving seeks to address scalability
without sacrificing solution quality (too much)

▶ Several different approaches developed in recent years
▶ Orthogonal performance on different domains.
▶ Best solvers combine several different algorithms

Take Home Message - Which solver to choose?
Short answer: Depends on the domain.
Longer answer (in 2021): Try TT-Open-WBO-Inc for weighted and
SATLike (2020 version) or Loandra for unweighted.

Summary

MaxSAT
▶ Low-level constraint language:

weighted Boolean combinations of binary variables
▶ Gives tight control over how exactly to encode problem

▶ Exact optimization: provably optimal solutions
▶ MaxSAT solvers:

▶ build on top of highly efficient SAT solver technology
▶ various alternative approaches:

branch-and-bound, model-improving, core-guided, IHS, …
▶ standard WCNF input format
▶ yearly MaxSAT solver evaluations

Success of MaxSAT
▶ Attractive alternative to other constrained optimization

paradigms
▶ Number of applications increasing
▶ Solver technology improving rapidly

Further Reading and Links
Talks at the Simons Institute
▶ Fahiem Bacchus on (complete) MaxSAT on April 1st.
▶ Jeremias on MaxSAT preprocessing on May 5th.

Surveys
▶ “Maximum Satisfiability” by Bacchus, Järvisalo & Martins

▶ Chapter in forthcoming vol. 2 of Handbook of Satisfiability
▶ Preprint available.

▶ Somewhat older surveys:
▶ Handbook chapter on MaxSAT: [Li and Manyà, 2009]
▶ Surveys on MaxSAT algorithms:

[Ansótegui, Bonet, and Levy, 2013]
[Morgado, Heras, Liffiton, Planes, and Marques-Silva, 2013]

MaxSAT Evaluations
https://maxsat-evaluations.github.io
Most recent report: [Bacchus, Järvisalo, and Martins, 2019]

https://maxsat-evaluations.github.io

Thank you for attending!

Bibliography I
Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten Schaub. Unsatisfiability-based optimization in

clasp. In Agostino Dovier and Vítor Santos Costa, editors, Technical Communications of the 28th International
Conference on Logic Programming, ICLP 2012, September 4-8, 2012, Budapest, Hungary, volume 17 of LIPIcs,
pages 211–221. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2012.

Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. Solving (weighted) partial MaxSAT through satisfiability
testing. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, 12th
International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of
Lecture Notes in Computer Science, pages 427–440. Springer, 2009.

Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms. Artificial Intelligence, 196:
77–105, 2013. doi: 10.1016/j.artint.2013.01.002. URL
http://dx.doi.org/10.1016/j.artint.2013.01.002.

Fahiem Bacchus and Nina Narodytska. Cores in core based MaxSAT algorithms: An analysis. In Carsten Sinz and
Uwe Egly, editors, Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International Conference,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings,
volume 8561 of Lecture Notes in Computer Science, pages 7–15. Springer, 2014.

Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in MaxSAT. In
J. Christopher Beck, editor, Principles and Practice of Constraint Programming - 23rd International
Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10416
of Lecture Notes in Computer Science, pages 641–651. Springer, 2017. doi:
10.1007/978-3-319-66158-2_41. URL https://doi.org/10.1007/978-3-319-66158-2_41.

Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. Maxsat evaluation 2018: New developments and detailed
results. J. Satisf. Boolean Model. Comput., 11(1):99–131, 2019. doi: 10.3233/SAT190119. URL
https://doi.org/10.3233/SAT190119.

Jeremias Berg, Emir Demirovic, and Peter J. Stuckey. Core-boosted linear search for incomplete maxsat. In
Louis-Martin Rousseau and Kostas Stergiou, editors, Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 16th International Conference, CPAIOR 2019, Thessaloniki, Greece,
June 4-7, 2019, Proceedings, volume 11494 of Lecture Notes in Computer Science, pages 39–56. Springer,
2019. doi: 10.1007/978-3-030-19212-9_3. URL https://doi.org/10.1007/978-3-030-19212-9_3.

http://dx.doi.org/10.1016/j.artint.2013.01.002
https://doi.org/10.1007/978-3-319-66158-2_41
https://doi.org/10.3233/SAT190119
https://doi.org/10.1007/978-3-030-19212-9_3

Bibliography II

Jeremias Berg, Fahiem Bacchus, and Alex Poole. Abstract cores in implicit hitting set maxsat solving. In Luca
Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd
International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in
Computer Science, pages 277–294. Springer, 2020. doi: 10.1007/978-3-030-51825-7_20. URL
https://doi.org/10.1007/978-3-030-51825-7_20.

Shaowei Cai, Chuan Luo, Jinkun Lin, and Kaile Su. New local search methods for partial MaxSAT. Artificial
Intelligence, 240:1–18, 2016. doi: 10.1016/j.artint.2016.07.006. URL
https://doi.org/10.1016/j.artint.2016.07.006.

Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT instances. In
Jimmy Ho-Man Lee, editor, Principles and Practice of Constraint Programming - CP 2011 - 17th International
Conference, CP 2011, Perugia, Italy, September 12-16, 2011. Proceedings, volume 6876 of Lecture Notes in
Computer Science, pages 225–239. Springer, 2011. ISBN 978-3-642-23785-0. doi:
10.1007/978-3-642-23786-7. URL http://dx.doi.org/10.1007/978-3-642-23786-7.

Jessica Davies and Fahiem Bacchus. Postponing optimization to speed up MAXSAT solving. In Christian Schulte,
editor, Principles and Practice of Constraint Programming - 19th International Conference, CP 2013, Uppsala,
Sweden, September 16-20, 2013. Proceedings, volume 8124 of Lecture Notes in Computer Science, pages
247–262. Springer, 2013a.

Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP solvers in MaxSAT. In Matti Järvisalo and
Allen Van Gelder, editors, Theory and Applications of Satisfiability Testing - SAT 2013 - 16th International
Conference, Helsinki, Finland, July 8-12, 2013. Proceedings, volume 7962 of Lecture Notes in Computer
Science, pages 166–181. Springer, 2013b.

Emir Demirovic and Peter J. Stuckey. Techniques inspired by local search for incomplete maxsat and the linear
algorithm: Varying resolution and solution-guided search. In Thomas Schiex and Simon de Givry, editors,
Principles and Practice of Constraint Programming - 25th International Conference, CP 2019, Stamford, CT,
USA, September 30 - October 4, 2019, Proceedings, volume 11802 of Lecture Notes in Computer Science,
pages 177–194. Springer, 2019. doi: 10.1007/978-3-030-30048-7_11. URL
https://doi.org/10.1007/978-3-030-30048-7_11.

https://doi.org/10.1007/978-3-030-51825-7_20
https://doi.org/10.1016/j.artint.2016.07.006
http://dx.doi.org/10.1007/978-3-642-23786-7
https://doi.org/10.1007/978-3-030-30048-7_11

Bibliography III
Zhaohui Fu and Sharad Malik. On solving the partial MAX-SAT problem. In Armin Biere and Carla P. Gomes,

editors, Theory and Applications of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle,
WA, USA, August 12-15, 2006, Proceedings, volume 4121 of Lecture Notes in Computer Science, pages
252–265. Springer, 2006. ISBN 3-540-37206-7.

Saurabh Joshi, Prateek Kumar, Ruben Martins, and Sukrut Rao. Approximation strategies for incomplete MaxSAT.
In John N. Hooker, editor, Principles and Practice of Constraint Programming - 24th International Conference,
CP 2018, Lille, France, August 27-31, 2018, Proceedings, volume 11008 of Lecture Notes in Computer Science,
pages 219–228. Springer, 2018. doi: 10.1007/978-3-319-98334-9_15. URL
https://doi.org/10.1007/978-3-319-98334-9_15.

Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. QMaxSAT: A partial Max-SAT solver.
Journal of Satisfiability, Boolean Modeling and Computation, 8(1/2):95–100, 2012.

Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In Handbook of Satisfiability, pages 613–631.
2009. doi: 10.3233/978-1-58603-929-5-613. URL
http://dx.doi.org/10.3233/978-1-58603-929-5-613.

Chuan Luo, Shaowei Cai, Kaile Su, and Wenxuan Huang. CCEHC: an efficient local search algorithm for weighted
partial maximum satisfiability. Artificial Intelligence, 243:26–44, 2017. doi: 10.1016/j.artint.2016.11.001.
URL https://doi.org/10.1016/j.artint.2016.11.001.

Vasco M. Manquinho, João Marques-Silva, and Jordi Planes. Algorithms for weighted boolean optimization. In
Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in
Computer Science, pages 495–508. Springer, 2009. doi: 10.1007/978-3-642-02777-2_45. URL
http://dx.doi.org/10.1007/978-3-642-02777-2_45.

Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT solver. In Carsten Sinz
and Uwe Egly, editors, Theory and Applications of Satisfiability Testing - SAT 2014 - 17th International
Conference, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014.
Proceedings, volume 8561 of Lecture Notes in Computer Science, pages 438–445. Springer, 2014.

António Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and João Marques-Silva. Iterative and
core-guided MaxSAT solving: A survey and assessment. Constraints, 18(4):478–534, 2013. doi:
10.1007/s10601-013-9146-2. URL http://dx.doi.org/10.1007/s10601-013-9146-2.

https://doi.org/10.1007/978-3-319-98334-9_15
http://dx.doi.org/10.3233/978-1-58603-929-5-613
https://doi.org/10.1016/j.artint.2016.11.001
http://dx.doi.org/10.1007/978-3-642-02777-2_45
http://dx.doi.org/10.1007/s10601-013-9146-2

Bibliography IV

António Morgado, Carmine Dodaro, and João Marques-Silva. Core-guided MaxSAT with soft cardinality
constraints. In Barry O’Sullivan, editor, Principles and Practice of Constraint Programming - 20th International
Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings, volume 8656 of Lecture Notes in
Computer Science, pages 564–573. Springer, 2014. ISBN 978-3-319-10427-0. doi:
10.1007/978-3-319-10428-7. URL http://dx.doi.org/10.1007/978-3-319-10428-7.

Alexander Nadel. Solving MaxSAT with bit-vector optimization. In Olaf Beyersdorff and Christoph M.
Wintersteiger, editors, Theory and Applications of Satisfiability Testing - SAT 2018 - 21st International
Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12,
2018, Proceedings, volume 10929 of Lecture Notes in Computer Science, pages 54–72. Springer, 2018.

Alexander Nadel. Anytime weighted maxsat with improved polarity selection and bit-vector optimization. In
Clark W. Barrett and Jin Yang, editors, 2019 Formal Methods in Computer Aided Design, FMCAD 2019, San
Jose, CA, USA, October 22-25, 2019, pages 193–202. IEEE, 2019. doi:
10.23919/FMCAD.2019.8894273. URL https://doi.org/10.23919/FMCAD.2019.8894273.

Tobias Paxian, Sven Reimer, and Bernd Becker. Dynamic polynomial watchdog encoding for solving weighted
MaxSAT. In Olaf Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability
Testing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part of the Federated Logic
Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings, volume 10929 of Lecture Notes in
Computer Science, pages 37–53. Springer, 2018.

Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP hybrid MaxSAT solver. In Nadia Creignou and
Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International
Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer
Science, pages 539–546. Springer, 2016.

http://dx.doi.org/10.1007/978-3-319-10428-7
https://doi.org/10.23919/FMCAD.2019.8894273

	Motivation and Basic Concepts
	Exact Optimization
	Benefits of MaxSAT
	MaxSAT: Basic Definitions
	MaxSAT Solvers: Input Format, Evaluations, and Availability
	SAT-IP Hybrid Algorithms for MaxSAT

	References

