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Who am I?

▶ Post Doctoral researcher at the
University of Helsinki
▶ Constraint Reasoning and

Optimisation Group led by
Prof. Matti Järvisalo.

▶ Defended PhD thesis on
algorithms and applications of
MaxSAT in 2018

▶ Visits to Melbourne (Prof.
Stuckey) and Toronto (Prof.
Bacchus)

▶ Research focus atm. on
declarative methods for solving
NP-hard optimisation problems.



Maximum Satisfiability

Maximum Satisfiability—MaxSat
Exact Boolean optimization paradigm
▶ Builds on the success story of Boolean satisfiability (SAT)

solving
▶ Great recent improvements in practical solver technology
▶ Expanding range of real-world applications

Offers an alternative to e.g. integer programming
▶ Solvers provide provably optimal solutions
▶ Propositional logic as the underlying declarative language:

especially suited for inherently “Boolean” optimization
problems



Implicit Hitting Set based Maximum Satisfiability

The IHS based approach to MaxSat
One of the central methods for exactly solving instances arising
in real-world domains.
▶ Decouples MaxSat into separate reasoning (i.e.

core-extraction) and optimization steps.
▶ Avoids increasing the complexity of SAT-calls.
▶ Top positions in annual evaluations since 2015
▶ IHS framework instantiated in various applications [Karp,

2010; Saikko, Wallner, and Järvisalo, 2016b; Fazekas, Bacchus, and Biere,
2018; Ignatiev, Previti, Liffiton, and Marques-Silva, 2015].



Outline

1. Motivation and Basic Concepts

2. (Short) Overview of MaxSAT solving Algorithms.

3. The implicit hitting set approach to MaxSAT
▶ With Correction Sets
▶ With Bounds.

4. Abstract Cores



Success of SAT

The Boolean satisfiability (SAT) Problem
Input: A propositional logic formula F.
Task: Is F satisfiable?

SAT is a Great Success Story
Not merely a central problem in theory:

Remarkable improvements since mid 90s in SAT solvers:
practical decision procedures for SAT
▶ Find solutions if they exist
▶ Prove non-existence of solutions
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SAT Solvers

From 100s of variables and constraints (early 90s)
up to 10M variables and constraints. (21st century).

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

All Time Winners on SAT Competition 2020 Benchmarks

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●

●●●●
● ●●●●

●●●●●
●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●● ● ●●●●

●●●●
●●●● ●● ●●●●

● ● ● ●

●●●●
●●●●
●●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●●●

●●●●
●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
● ●●●●●

●●●●
●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●● ●●●● ●●● ●●● ● ●● ●● ● ●●●● ●●●●●
● ●●

●●●●
●●●●● ●●●●●●●

●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●●●●●

●●●●●
●●●●●●●

●●●●●●●●
●●●●
●●●●
●●●●●●

●●● ●●●●●● ● ●● ●●● ●●● ●●●● ●● ●●●●
●●

●●●●
●●●●
●●●●
●●●●
●●●●

● ●●●●
●●●●●●●●●● ●●●●●● ●●●●

● ●●● ●●●●●
●● ● ●●●●● ●●●● ● ● ●●● ● ● ●●●

●●●●
●●● ●●● ●● ● ● ● ●● ●

●

●

●

●

●

kissat−2020
maple−lcm−disc−cb−dl−v3−2019
maple−lcm−dist−cb−2018
maple−lcm−dist−2017
maple−comsps−drup−2016
lingeling−2014
abcdsat−2015
lingeling−2013
glucose−2012
glucose−2011
precosat−2009
cryptominisat−2010
minisat−2008
minisat−2006
satelite−gti−2005
rsat−2007
berkmin−2003
zchaff−2004
limmat−2002

Plot provided by Armin Biere

Core NP search procedures for solving various types of
computational problems
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Optimization

Most real-world problems involve an optimization component
Examples:
▶ Find a shortest path/plan/execution/…to a goal state

▶ Planning, model checking, …
▶ Find a smallest explanation

▶ Debugging, configuration, …
▶ Find a least resource-consuming schedule

▶ Scheduling, logistics, …
▶ Find a most probable explanation (MAP)

▶ Probabilistic inference, …

High demand for automated approaches to
finding good solutions to computationally hard

optimization problems
; Maximum satisfiability
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MaxSat Applications

Drastically increasing number of successful applications
▶ Planning, Scheduling, and Configuration
▶ Data Analysis and Machine Learning
▶ Knowledge Representation and Reasoning
▶ Combinatorial Optimization
▶ Verification and Security
▶ Bioinformatics
▶ …

▶ Tens of new problem domains in MaxSAT Evaluations

This progress is much due to significant progress in efficient
MaxSAT solvers.



Progress in MaxSat Solver Performance
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Benefits of (IHS-based) MaxSat
Provably optimal solutions

Example: Correlation clustering by (IHS-based) MaxSat
[Berg and Järvisalo, 2017]
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▶ Improved solution costs over approximative algorithms
▶ Good performance even on sparse data (missing values)



Benefits of (IHS-based) MaxSat
Surpassing the efficiency of specialized algorithms

Example:
Learning optimal bounded-treewidth Bayesian networks

[Berg, Järvisalo, and Malone, 2014]

MaxSat vs Dynamic Programming and MIP
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Basic Concepts



MaxSat: Basic Definitions

▶ Simple constraint language:
conjunctive normal form (CNF) propositional formulas
▶ More high-level constraints encoded as sets of clauses

▶ Literal: a boolean variable x or ¬x.
▶ Clause C: a disjunction (∨) of literals. e.g (x ∨ y ∨ ¬z)
▶ Truth assignment τ : a function from Boolean variables to
{0, 1}.

▶ Satisfaction:
τ(C) = 1 if
τ(x) = 1 for some literal x ∈ C, or
τ(x) = 0 for some literal ¬x ∈ C.

At least one literal of C is made true by τ .



MaxSat: Basic Definitions

MaxSat
INPUT: a set of clauses F. (a CNF formula)
TASK: find τ s.t.

∑
C∈F

τ(C) is maximized.

Find truth assignment that satisfies a maximum number of
clauses

This is the standard definition, much studied in Theoretical
Computer Science.
▶ Often inconvenient for modelling practical problems.



Central Generalizations of MaxSat

Weighted MaxSat
▶ Each clause C has an associated weight wC
▶ Optimal solutions maximize the sum of weights of satisfied

clauses: τ s.t.
∑
C∈F

wcτ(C) is maximized.

Partial MaxSat
▶ Two sets of clauses FH and FS
▶ Clauses in FH deemed hard

▶ Any solution has to satisfy the hard clauses
▶ Clauses in FS are soft.

Weighted Partial MaxSat
Hard clauses (partial) + weights on soft clauses (weighted)



Central Generalizations of MaxSat

Partial MaxSat
▶ Two sets of clauses FH and FS
▶ Clauses in FH deemed hard
▶ Clauses in FS are soft.
▶ Find model τ that satisfies FH and maximizes∑

C∈FS

τ(C)

Rest of the talk
unweighted examples
All techniques applicable in the weighted case as well.



MaxSat Algorithmically

In theory - a maximization problem
Find model τ that satisfies FH and maximizes∑

C∈FS

τ(C)

In practice - a minimization problem
Find model τ that satisfies FH and minimizes

cost(τ) =
∑

C∈FS

(1− τ(C))
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Example

INPUT: Instance I = (FH,FS)
OUTPUT: Solution τ that:

(i) satisfies FH
(ii) minimizes cost(τ) =

∑
C∈FS

1− τ(C)

FH = {(b1 ∨ b2), (b2 ∨ b3)}

FH = {(b1 ∨ b2), (b2 ∨ b3)}FH = {(b1 ∨ b2), (b2 ∨ b3)} τ(b1) = τ(b3) = τ(b2) = 1τ(b1) = τ(b3) = 0
τ(b2) = 1

FS = {(¬b1), (¬b2), (¬b3)}

FS = {(¬b1), (¬b2), (¬b3)}FS = {(¬b1), (¬b2), (¬b3)}

cost(τ) = 3cost(τ) = 1

τ = {¬b1, b2,¬b3}

Assignments treated as sets
of literals.
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MaxSat: Complexity

Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSat is FPNP–complete
▶ Polynomial number of oracle calls
▶ A SAT solver acts as the NP oracle most often in practice

Complexity of IHS for solving MaxSat

Theorem
For every n ∈ N there exists an instance I on which an IHS
algorithm needs to perform Ω(2n) SAT-solver calls.



MaxSat: Complexity

Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSat is FPNP–complete
▶ Polynomial number of oracle calls
▶ A SAT solver acts as the NP oracle most often in practice

Complexity of IHS for solving MaxSat

Theorem
For every n ∈ N there exists an instance I on which an IHS
algorithm needs to perform Ω(2n) SAT-solver calls.



MaxSat: Complexity

Deciding whether k clauses can be satisfied: NP-complete
Input: A CNF formula F, a positive integer k.
Question:
Is there an assignment that satisfies at least k clauses in F?

MaxSat is FPNP–complete
▶ Polynomial number of oracle calls
▶ A SAT solver acts as the NP oracle most often in practice

Complexity of IHS for solving MaxSat

Theorem
For every n ∈ N there exists an instance I on which an IHS
algorithm needs to perform Ω(2n) SAT-solver calls.



A (short) overview of MaxSat
solvers



Types of MaxSat Solvers

MaxSat Solver
Practical implementation of an algorithm for finding (optimal)
solutions to MaxSAT instances

Focus here: Complete MaxSat solving
▶ Guaranteed to output a provably optimal solution to any

instance
(given enough resources (time & space))



Push-Button Solvers

▶ Black-box, no command line
parameters necessary

▶ Input: CNF formula, in the standard
DIMACS WCNF file format

▶ Output: provably optimal solution,
or UNSATISFIABLE
▶ Complete solvers

mancoosi-test-i2000d0u98-26.wcnf
p wcnf 18169 112632 31540812410
31540812410 -1 2 3 0
31540812410 -4 2 3 0
31540812410 -5 6 0
...
18170 1133 0
18170 457 0
... truncated 2.4 MB

Internally rely especially on CDCL SAT solvers
for proving unsatisfiability of subsets of clauses



Availability

Open Source
Starting from 2017, solvers need to be open-source in order to
participate in MaxSat Evaluations
▶ Incentive for openness
▶ Allow other to build on and test new ideas on establish

solver source bases
https://maxsat-evaluations.github.io/

https://maxsat-evaluations.github.io/


Types of Complete Solvers

▶ Branch and Bound
▶ Can be effective of small-but hard & randomly generated

instances

▶ SAT-based MaxSat algorithms

▶ Model-improving
▶ Core-guided
▶ Implicit hitting set

Upper Bounding
use a SAT-solver to extract solutions of increasing quality
until no better ones can be found
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Types of Complete Solvers

▶ Branch and Bound

▶ Can be effective of small-but hard & randomly generated
instances

▶ SAT-based MaxSat algorithms
▶ Model-improving
▶ Core-guided

▶ Implicit hitting set

Lower Bounding
use a SAT solver to extract small sets of unsatisfiable constraints
and relax the instance in a controlled way.



Types of Complete Solvers

▶ Branch and Bound

▶ Can be effective of small-but hard & randomly generated
instances

▶ SAT-based MaxSat algorithms
▶ Model-improving
▶ Core-guided
▶ Implicit hitting set

Hybrid
decouple MaxSAT solving into core-extraction and optimisation



Implicit Hitting Set
Algorithms for MaxSat

[Davies and Bacchus, 2011, 2013b,a]



Goals for this Section

▶ Basic concepts:
▶ Cores
▶ Hitting Sets

▶ Implicit Hitting set for solving MaxSAT (the simple way)



Unsat Cores

▶ Central in IHS MaxSAT:

▶ κ ⊂ FS is an core if FH ∧ κ is
unsatisfiable

▶ κ ⊂ FS is an MUS if no κs ⊊ κ is
a core.

In the rest of the presentation, we
represent clauses (b1 ∨ b2) as
(b1, b2).

FH = {(b1 ∨ b2), (b2 ∨ b3)}

FH = {(b1, b2), (b2, b3)}

FS = {(¬b1), (¬b2), (¬b3)}

κ = {(¬b1), (¬b2)}
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Hitting Sets over Cores

▶ C - a collection of
cores

▶ hs ⊂ FS is an hitting
set if hs ∩ κ 6= ∅ for
all κ ∈ C

▶ cost(hs) = |hs| (i.e.
number of clauses in
it)

▶ hs is minimum-cost
if no other hs′ has
cost(hs′) < cost(hs)

FH = {(b1, b2), (b2, b3)}

FS = {(¬b1), (¬b2), (¬b3)}

C = {{(¬b1), (¬b2)},
{(¬b2), (¬b3)}}

C = {{(¬b1), (¬b2)},
{(¬b2), (¬b3)}}

C = {{(¬b1), (¬b2)},
{(¬b2), (¬b3)}}

hs1 = {(¬b1), (¬b3)}
cost(hs1) = 2

hs2 = {(¬b2)}
cost(hs2) = 1
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Hitting Sets over Cores

▶ C - a collection of
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What does this have to do with MaxSat?

▶ C all (subset minimal) cores.
▶ hs, minimum-cost over C
▶ → exists τhs that satisfies exactly FH ∧ (FS \ hs).

Key insight
▶ Such hs can be computed implicitly.

▶ Compute a minimum-cost hs over any set of cores
▶ Check if FH ∧ (FS \ hs) is satisfiable.
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▶ C all (subset minimal) cores.
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▶ → exists τhs that satisfies exactly FH ∧ (FS \ hs).

Key insight
▶ Such hs can be computed implicitly.

▶ Compute a minimum-cost hs over any set of cores
▶ Check if FH ∧ (FS \ hs) is satisfiable.



Implicit Hitting Set Approach to MaxSat
Iterate over the following steps:
▶ Accumulate a collection K of UNSAT cores

using a SAT solver
▶ Find an optimal hitting set hs over K,

and rule out the clauses in hs for the next SAT solver call
using an IP solver

…until the SAT solver returns satisfying assignment.

Hitting Set Problem as Integer Programming

min
∑

C∈∪K
w(C) · bC

subject to
∑
C∈K

bC ≥ 1 ∀K ∈ K

▶ bC = 1 iff clause C in the hitting set
▶ Weight function w: works also for weighted MaxSat
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Implicit Hitting Set Approach to MaxSat

“Best out of both worlds”
Combining the main strengths of SAT and IP solvers:

▶ SAT solvers are very good at proving unsatisfiability

▶ Explanations for unsatisfiability in terms of cores
▶ Each SAT solver call made on a subset of the clauses in the

instance

▶ IP solvers at optimization

▶ Instead of directly solving the input MaxSAT instance:
solve a sequence of simpler hitting set problems over the
cores
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“Best out of both worlds”
Combining the main strengths of SAT and IP solvers:
▶ SAT solvers are very good at proving unsatisfiability

▶ Explanations for unsatisfiability in terms of cores
▶ Each SAT solver call made on a subset of the clauses in the
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Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses FH, soft clauses FS, weight function w : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

H, S
hs := ∅
K := ∅

SAT solver

FH ∧ (FS \ hs)

IP solver
min

∑
C∈FS

w(C) · bC∑
C∈K bC ≥ 1 ∀K ∈ K

w

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses FH, soft clauses FS, weight function w : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

1. Initialize
H, S

hs := ∅
K := ∅

SAT solver

FH ∧ (FS \ hs)

IP solver
min

∑
C∈FS

w(C) · bC∑
C∈K bC ≥ 1 ∀K ∈ K

w

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses FH, soft clauses FS, weight function w : S 7→ R+

Min-cost
Hitting Set

UNSAT core
extraction

2. UNSAT core
H, S

hs := ∅
K := ∅

SAT solver

FH ∧ (FS \ hs)

IP solver
min

∑
C∈FS

w(C) · bC∑
C∈K bC ≥ 1 ∀K ∈ K

w

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving MaxSat by SAT and Hitting Set Computations
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Solving MaxSat by SAT and Hitting Set Computations

Input:
hard clauses FH, soft clauses FS, weight function w : S 7→ R+

Min-cost
Hitting Set

UNSAT core
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iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

FH ∧ (FS \ hs)

IP solver
min

∑
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w(C) · bC∑
C∈K bC ≥ 1 ∀K ∈ K

w
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Solving MaxSat by SAT and Hitting Set Computations

Input:
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Solving MaxSat by SAT and Hitting Set Computations

Intuition: After optimally hitting all cores of FH ∧ FS by hs:
any solution to FH ∧ (FS \ hs) is guaranteed to be optimal.

Min-cost
Hitting Set

UNSAT core
extraction

iterate until “sat”
H, S

hs := ∅
K := ∅

SAT solver

FH ∧ (FS \ hs)

IP solver
min

∑
C∈FS

w(C) · bC∑
C∈K bC ≥ 1 ∀K ∈ K

w

K := K ∪ {K}

unsat

hs of Ksat

Optimal solution
found



Solving (unweighted) MaxSat with IHS
FH = {(b1, b2), (b2, b3), (b3, b4)}
FS = {(¬b1), (¬b2), (¬b3), (¬b4)}

FH = {(b1, b2), (b2, b3), (b3, b4)}
FS = {(¬b1), (¬b2), (¬b3), (¬b4)}

IP solver
min

∑
C∈FS

bC∑
C∈K bC ≥ 1 ∀K ∈ C

IP solver
min

∑
C∈FS

bC∑
C∈K bC ≥ 1 ∀K ∈ C

SAT solver
FH ∧ (FS \ hs)

SAT solver
FH ∧ (FS \ hs)

sat-solve
FH ∧ {(¬b1), (¬b2), (¬b3), (¬b4)}
sat-solve
FH ∧ {(¬b2), (¬b3), (¬b4)}
sat-solve
FH ∧ {(¬b1), (¬b3), (¬b4)}
sat-solve
FH ∧ {(¬b1), (¬b4)}

Result UNSAT

Result SAT κ = {(¬b1), (¬b2)}κ = {(¬b2), (¬b3)}κ = {(¬b3), (¬b4)}τ = {¬b1, b2, b3,¬b4}

C = ∅C = {{(¬b1), (¬b2)}}C = {{(¬b1), (¬b2)}, {(¬b2), (¬b3)}}C = {{(¬b1), (¬b2)}, {(¬b2), (¬b3)},
(¬b3), (¬b4)}}

ip-solve
hs = ∅hs = {(¬b1)}hs = {(¬b2)}hs = {(¬b2), (¬b3)}

Basic-IHS (F)

InitializeInitialize
while True

Compute hsCompute hs
SAT-solve FH ∧ (FS \ hs)SAT-solve FH ∧ (FS \ hs)
If UNSAT

add core to C
If UNSAT

add core to C
ELSE

return τ
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Implicit Hitting Sets with
Bounds



Goals for this Section

1. MaxSat in terms of blocking variables
2. IHS in terms of bounds.



Blocking Variables

▶ Various modern CDCL SAT solvers implement an API for
solving under assumptions.

▶ assumps: a set of literals
▶ sat-assume(F , assumps) returns either:

▶ a solution τ , that satisfies F and sets τ(l) = 1 for all
l ∈ assumps.

▶ unsat if no such solution exists.

FH = {(b1, b2), (b2, b3), (b3, b4)}

assumps = {¬b1,¬b3}

assumps = {¬b1,¬b2,¬b3}assumps = {¬b1,¬b2,¬b3}

sat-assume(FH, assumps) = SAT

τ = {¬b1, b2,¬b3, b4}

sat-assume(FH, assumps) = UNSAT
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Blocking Variables
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What does this have to do with MaxSAT?

CDCL SAT solvers determine unsatisfiability when learning the
empty clause
▶ By propagating a conflict at decision level 0

Explaining unsatisfiability under assumptions
▶ Trace the reason for unsatisfiability back to assumptions

that were necessary for the conflict.
▶ Essentially:

▶ Force the assumptions as the first “decisions”
▶ When one of these decisions results in a conflict: trace the

reason of the conflict back to the forced assumptions
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Extracting cores via Assumptions

▶ Instrument each soft clause Ci with a new “assumption”
variable ai
; replace Ci with (Ci ∨ ai) for each soft clause Ci
▶ ai = 0 switches Ci “on”,

ai = 1 switches Ci “off”
▶ FE

S : soft clauses extended with assumption variables
▶ ¬A = {¬ai} negation of all assumption variables

▶ MaxSat core: a subset of the assumptions variables

▶ Invoke sat-assume(FH ∧ FE
S ,¬A)

▶ If UNSAT, obtain subset κa ⊂ A
▶ Map to core κ = {Ci | ai ∈ κa}
▶ Used by all core-based MaxSAT algorithms.
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Core Extraction - Example

FH = {(b1, b2), (b2, b3), (b3, b4)}
FS = {(¬b1), (¬b2), (¬b3), (¬b4)}

FE
S = {(¬b1 ∨ a1), (¬b2 ∨ a2), (¬b3 ∨ a3), (¬b4 ∨ a4)}

sat-assume(FH ∧ FE
S , {¬a1,¬a2,¬a3,¬a4})

Results: UNSAT
κa = {a1, a2} κ = {(¬b1), (¬b2)}

Observation:
Unit soft clauses do not need assumption variables

1. Extend Soft Clauses
2. Invoke SAT-solver under assumptions
3. Obtain subset of negated assumptions
4. Obtain core.
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Unit soft clauses do not need assumption variables

1. Extend Soft Clauses
2. Invoke SAT-solver under assumptions
3. Obtain subset of negated assumptions
4. Obtain core.



MaxSat via Blocking Variables

Clauses
FH = {(b1, x)(¬x, b2)}
FS = {(¬b1), (¬b2)}

Find τ(FH) = 1 minimizing
cost(τ) =

∑
C∈FS

(1− τ(C))

κ = {(¬b1), (¬b2)} ⊂ FS
FH ∧ (¬b1) ∧ (¬b2) UNSAT

Blocking Vars.
FH = {(b1, x)(¬x, b2)}
FB = {b1, b2}

Find τ(FH) = 1 minimizing
cost(τ) =

∑
b∈FB

τ(b)

κ = (b1, b2)
FH |= (b1, b2)

Assume all soft clauses are unit negative literals.

Blocking Variable: a variable that appears in a ”soft clauses”

Assign weight to blocking variables instead

Core: a clause over (set of) blocking variables entailed by FH.

Hitting Set: a subset of blocking variables
with non-empty intersection with cores.
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Core Extraction with Blocking Variables

FH = {(b1, b2), (b2, b3), (b3, b4)}
FB = {b1, b2, b3, b4}

sat-assume(FH, {¬b | b ∈ FB})
Results: UNSAT
κ = {b1, b2}

C = {(b1, b2), (b2, b3)} hs = {b2}
sat-assume(FH, {¬b | b ∈ FB \ hs})
Results: UNSAT
κ = {b3, b4}

1. Core extraction

2. Hitting set test:



Core Extraction with Blocking Variables

FH = {(b1, b2), (b2, b3), (b3, b4)}
FB = {b1, b2, b3, b4}

sat-assume(FH, {¬b | b ∈ FB})
Results: UNSAT
κ = {b1, b2}

C = {(b1, b2), (b2, b3)} hs = {b2}
sat-assume(FH, {¬b | b ∈ FB \ hs})
Results: UNSAT
κ = {b3, b4}

1. Core extraction

2. Hitting set test:



IHS with bounds

Upper bounds from Core Extraction

▶ A new hitting set is not needed after every core.
▶ Instead, keep extracting cores until solver reports SAT
▶ Obtain model τ of FH for which cost(τ) is an upper bound

on the optimal cost.

Lower bounds from hitting sets
Proposition:
Let C be any set of cores and hs a minimum-cost hitting set.
Then |hs| is a lower bound on the optimal cost.

i.e. sizes of minimum-cost hitting sets over cores provide lower bounds.
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IHS with bounds

Upper bounds from Core Extraction
▶ A new hitting set is not needed after every core.
▶ Instead, keep extracting cores until solver reports SAT
▶ Obtain model τ of FH for which cost(τ) is an upper bound

on the optimal cost.

Lower bounds from hitting sets
Proposition:
Let C be any set of cores and hs a minimum-cost hitting set.
Then |hs| is a lower bound on the optimal cost.
i.e. sizes of minimum-cost hitting sets over cores provide lower bounds.



Solving (unweighted) MaxSat with IHS

FH = {(b1, b2), (b2, b3), (b3, b4)}
FB = {b1, b2, b3, b4}

hs = Min-Hs (FB, ∅)hs = ∅hs = ∅hs = Min-Hs (FB, {(b1, b2), (b3, b4)})hs = {b1, b4}hs = {b1, b4}sat-assume(FH,¬A)sat-assume(FH,¬A)sat-assume(FH,¬A)sat-assume(FH,¬A)sat-assume(FH,¬A)sat-assume(FH,¬A)
A = FB \ hsA = {b1, b2, b3, b4}A = {��b1,��b2, b3, b4}A = {b3, b4}A = {��b3,��b4}A = {}
K = {}K = {(b1, b2)}K = {(b1, b2)}K = {(b1, b2), (b3, b4)}K = {(b1, b2), (b3, b4)}
τ = {¬b1, b2,¬b3, b4}τ = {¬b1, b2,¬b3, b4}

UB =∞UB = cost(τ)UB = 2UB = 2

LB = 0LB = |∅|LB = 0LB = |{b1, b4}|LB = 2

C = ∅C = {(b1, b2), (b3, b4)}C = {(b1, b2), (b3, b4)}

bestsol = ∅bestsol = {¬b1, b2,¬b3, b4}bestsol = {¬b1, b2,¬b3, b4}bestsol = {¬b1, b2,¬b3, b4}

LB need to be increased
to optimum before termination

Basic-IHS (F)

InitializeInitialize
while LB < UBwhile LB < UB

Compute min-cost hitting set hsCompute min-cost hitting set hs
Update LBUpdate LB
Set up assumptionsSet up assumptions
Extract cores until SATExtract cores until SAT
Update UBUpdate UB
Add cores to CAdd cores to C

return bestsol

Min-Hs (FB,C):
minimize:

∑
b∈FB

b
subject to:

∑
b∈κ b ≥ 1 ∀κ ∈ C

return: {b | b set to 1 in opt. soln}

Min-Hs (FB,C):
minimize:

∑
b∈FB

wt(b)b
subject to:

∑
b∈κ b ≥ 1 ∀κ ∈ C

return: {b | b set to 1 in opt. soln}

Weighted Case

Min-Hs (FB,C):
minimize:

∑
b∈FB

b
subject to:

∑
b∈κ b ≥ 1 ∀κ ∈ C

return: {b | b set to 1 in opt. soln}
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Optimizations in Solvers

Solvers implementing the implicit hittings set approach include
several optimizations, such as
▶ a non-optimal hitting sets for extracting several cores

before/between hitting set computations, [Davies and Bacchus,
2011, 2013b,a; Saikko, Berg, and Järvisalo, 2016a]

▶ LP-solving techniques such as reduced cost fixing in the
hitting sets

[Bacchus, Hyttinen, Järvisalo, and Saikko, 2017]

▶ …

Some of these optimizations are integral for making the solvers
competitive.



Implicit Hitting Sets

▶ Effective on range of MaxSat problems including large ones.
▶ Superior to other methods when there are many distinct

weights.
▶ Usually superior to CPLEX for solving MaxSAT instances.



Abstract Cores



Goals for this section

1. What are the weaknesses of IHS for MaxSAT?
2. What are abstract cores and how do they address the

weaknesses?
3. How can abstract core reasoning be incorporated into IHS?
4. What effect does it have?
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Drawbacks of IHS
Davies [2013]

Main motivation for abstract cores:
There exists MaxSAT instances on which IHS needs
an exponential number of cores.

FH =

{
CNF(

n∑
i=1

bi ≥ r)
}

FB = {b1, . . . , bn}

Any solution assigns r b-vars to 1
⇒ any subset of b-vars with at least (n− r) + 1 elements has
one set to 1

κ1 = (bi1 , bi2 , bi3 , bi4 , bi5 )

n = 8, r = 4

is a core for any i1, i2, i3, i4, i5

κ2 = (bi1 , bi2 , bi3 , bi4 )

is not a core for any i1, i2, i3, i4

Intuition:
Any κ ⊂ FB s.t |κ| = (n − r) + 1 is a core.
IHS needs to extract all

( n
(n−r)+1

)
of them.

Blocking variables are exchangeable:
cores are defined by the number of them,
not the identity of them
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More Specifically

FH =

{
CNF(

n∑
i=1

bi ≥ r)
}

FB = {b1, . . . , bn}

Opt. cost = r

Let C be any set of cores.
Assume S /∈ C for some |S| = n− r + 1

Then FB \ S hits every κ ∈ C
|Min-Hs(FB, ∅)| ≤ |FB \ S| = r− 1 < r = Opt. cost
⇒ IHS does not terminate.
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Weakness shown in practice
https://maxsat-evaluations.github.io/2019/rankings.html

Benchmarks MaxHS MaxHS 4.0 RC2
drmx-atmostk (W) (11) 3 11 11

drmx-atmostk (UW) (17) 3 17 17

▶ Results from 2019 MSE and our paper.
▶ MaxHS: an IHS solver w/o abstract cores
▶ MaxHS 4.0 an IHS solver with abstract cores
▶ RC2: the best performing solver in the 2020 MaxSat

evaluation

https://maxsat-evaluations.github.io/2019/rankings.html


Abstract Cores

Research Question
Does there exists a compact representation of large sets of cores
that IHS can reason over?



Abstract cores
Idea: What happens if we introduce literals that count the
number of blocking variables set to true?
(similar to variables that have been successfully used in core-guided solvers)

FH =

{
CNF(

n∑
i=1

bi ≥ r)
}

FB = {b1, . . . , bn}

sAB[i]↔
(∑

b∈AB b ≥ i
)

sAB[i]↔
(∑

b∈AB b ≥ i
)

Note: Can be encoded as CNF

AB = {b1, . . . , b5} ⊂ FB

Define sAB[i]

Consider: (b7, sAB[3], bn)

Consider: (b7, sAB[3], bn)

(b7, b1, b2, b3, bn)

(b7, b3, b4, b2, bn)

(b7, b4, b2, b1, bn)

sAB[3] = 1 means∑
b∈S b ≥ 1 = (

∨
b∈S b)

for any S ⊂ AB with
|S| = 3(= 5− 3 + 1)

Terminology:
AB is an abstraction set

sAB[i] is an abstraction variable

The definition of sAB[i] is
sAB[i]↔

(∑
b∈AB b ≥ i

)
Abstract Core:
a clause over abstraction and blocking variables that is entailed by
FH and the definitions of abstraction variables

Could use other definitions
Summations successfull
in core-guided solvers.
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Abstract cores are expressive

Proposition
An abstract core containing the abstraction variables
{sAB1

[j1], . . . , sABk
[jk]} is equivalent to the conjunction of

k∏
i=1

(
|ABi|

|ABi| − ji + 1

)
regular cores.

Two Questions remain:
1. How to compute abstraction sets?
2. How to extract and reason over abstract cores in IHS?
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Computing Abstraction Sets

Ideally
Identify a set S ⊂ FB of
exchangeable blocking
variables.
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Form abstraction sets over
blocking variables that
appear frequently in cores
together.

Recall: IHS needs to
increase LB to optimum
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11
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blocking variables with
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IHS with abstract core reasoning
FH = {(b1, b2), (b2, b3), (b3, b4)}

FB = {b1, b2, b3, b4}

FH = {(b1, b2), (b2, b3), (b3, b4),∧2
i=1 CNF

(
(b2 + b3 ≥ i) → sAB[i]

)
}

hs = Min-Abs (FB, ∅,AB)hs = ∅hs = ∅hs = Min-Abs (FB, {(sAB[1])},AB)hs = {b2}hs = {b2}hs = Min-Abs (FB,C,AB)hs = {b2, b3}hs = {b2, b3}sat-assume(FH,¬A)sat-assume(FH,¬A)sat-assume(FH,¬A)sat-assume(FH,¬A)sat-assume(FH,¬A)sat-assume(FH,¬A)
A = ABSTRACT(FB, hs,AB)

= {b1, sAB[1], b4}
AB = {b2, b3}

A = {b1, sAB[1], b4}A = {b1,����sAB[1], b4}A = {b1, b4}A = {b1, sAB[2], b4}A = {b1, sAB[2], b4}A = {��b1,����sAB[2],��b4}
K = {}K = {(sAB[1])}K = {(sAB[1])}K = {(sAB[1])}K = {}K = {(b1, sAB[2], b4)}K = {(b1, sAB[2], b4)}
τ = {¬b1, b2, b3,¬b4}

UB =∞UB = cost(τ)UB = 2UB = 2 LB = 0LB = |∅|LB = 0LB = |{b2}|LB = 1LB = |{b2, b3}|LB = 2

AB = ∅AB = ∅AB = {AB = {b2, b3}}AB = {AB = {b2, b3}}

C = ∅C = {(sAB[1])}C = {(sAB[1])}C = {(sAB[1]), (b1, sAB[2], b4)}C = {(sAB[1]), (b1, sAB[2], b4)}

bestsol = ∅bestsol = {¬b1, b2, b3,¬b4}bestsol = {¬b1, b2, b3,¬b4}bestsol = {¬b1, b2, b3,¬b4}

Abstract-IHS (F)

InitializeInitialize
while LB < UBwhile LB < UB

Update ABUpdate AB
Compute min-cost hitting set hsCompute min-cost hitting set hs
Update LBUpdate LB
Set up assumptionsSet up assumptions
Extract cores until SATExtract cores until SAT
Update UBUpdate UB
Add cores to CAdd cores to C

return bestsol∑
b∈AB b− k · sAB[k] ≥ 0∑
b∈AB b− |AB| · sAB[k] < k Min-Abs (FB,C,AB):

minimize:
∑

b∈FB
b

subject to:
∑

b∈κ b ≥ 1 ∀κ ∈ C(∑
b∈AB b ≥ k

)
↔ sAB[k] ∀AB ∈ AB

return: {b | b set to 1 in opt. soln}

Min-Abs (FB,C,AB):
minimize:

∑
b∈FB

b
subject to:

∑
b∈κ b ≥ 1 ∀κ ∈ C(∑

b∈AB b ≥ k
)
↔ sAB[k] ∀AB ∈ AB

return: {b | b set to 1 in opt. soln}

ABSTRACT(FB, hs,AB)
A ← {b | b ∈ FB − hs}
foreach AB ∈ AB do
A ← A− {b | b ∈ AB}
A ← A ∪ {sAB[|AB ∩ hs|+ 1]}

return A
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↔ sAB[k] ∀AB ∈ AB

return: {b | b set to 1 in opt. soln}

Min-Abs (FB,C,AB):
minimize:

∑
b∈FB

b
subject to:

∑
b∈κ b ≥ 1 ∀κ ∈ C(∑
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b∈AB b ≥ k
)
↔ sAB[k] ∀AB ∈ AB

return: {b | b set to 1 in opt. soln}

ABSTRACT(FB, hs,AB)
A ← {b | b ∈ FB − hs}
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A = ABSTRACT(FB, hs,AB)

= {b1, sAB[1], b4}
AB = {b2, b3}

A = {b1, sAB[1], b4}A = {b1,����sAB[1], b4}A = {b1, b4}A = {b1, sAB[2], b4}A = {b1, sAB[2], b4}A = {��b1,����sAB[2],��b4}
K = {}K = {(sAB[1])}K = {(sAB[1])}K = {(sAB[1])}K = {}K = {(b1, sAB[2], b4)}K = {(b1, sAB[2], b4)}
τ = {¬b1, b2, b3,¬b4}

UB =∞UB = cost(τ)UB = 2

UB = 2

LB = 0LB = |∅|LB = 0LB = |{b2}|LB = 1LB = |{b2, b3}|

LB = 2

AB = ∅AB = ∅AB = {AB = {b2, b3}}

AB = {AB = {b2, b3}}

C = ∅C = {(sAB[1])}C = {(sAB[1])}C = {(sAB[1]), (b1, sAB[2], b4)}

C = {(sAB[1]), (b1, sAB[2], b4)}

bestsol = ∅bestsol = {¬b1, b2, b3,¬b4}bestsol = {¬b1, b2, b3,¬b4}

bestsol = {¬b1, b2, b3,¬b4}

Abstract-IHS (F)

Initialize

Initialize
while LB < UB

while LB < UB
Update AB

Update AB

Compute min-cost hitting set hs

Compute min-cost hitting set hs

Update LB

Update LB

Set up assumptions

Set up assumptions

Extract cores until SAT

Extract cores until SAT

Update UB

Update UB

Add cores to C

Add cores to C
return bestsol

∑
b∈AB b− k · sAB[k] ≥ 0∑
b∈AB b− |AB| · sAB[k] < k Min-Abs (FB,C,AB):

minimize:
∑

b∈FB
b

subject to:
∑

b∈κ b ≥ 1 ∀κ ∈ C(∑
b∈AB b ≥ k

)
↔ sAB[k] ∀AB ∈ AB

return: {b | b set to 1 in opt. soln}

Min-Abs (FB,C,AB):
minimize:

∑
b∈FB

b
subject to:

∑
b∈κ b ≥ 1 ∀κ ∈ C(∑

b∈AB b ≥ k
)
↔ sAB[k] ∀AB ∈ AB

return: {b | b set to 1 in opt. soln}

ABSTRACT(FB, hs,AB)
A ← {b | b ∈ FB − hs}
foreach AB ∈ AB do
A ← A− {b | b ∈ AB}
A ← A ∪ {sAB[|AB ∩ hs|+ 1]}

return A



Effects of Abstract Cores



Abstract cores improve IHS in theory

In theory
For each (unweighted) MaxSAT instance, there exists an
abstraction set with which Abstract-IHS terminates with a
polynomial number of cores.

..however
▶ trade of between expressivity and overhead
▶ abstraction sets should be large enough to benefit IHS

without inducing a lot of overhead.
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..and practice
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▶ maxhs: basic IHS (MaxHS [Davies and Bacchus, 2013b, 2011])
▶ maxhs-abs: maxhs with abstract core reasoning
▶ maxhs-abs-ex: maxhs-abs with additional heuristics.
▶ rc2 and UWr best performing solvers in 2019 MSE

[Ignatiev, Morgado, and Marques-Silva, 2019; Karpinski and Piotrów, 2019]



Results - Weighted
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by benchmark family
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Summary



Implicit hitting sets for MaxSat

▶ MaxSAT - Low-level constraint language:
weighted Boolean combinations of binary variables
▶ Gives tight control over how exactly to encode problem

▶ Exact optimization: provably optimal solutions
▶ IHS MaxSat solvers:

▶ build on top of highly efficient SAT and IP solver technology
▶ one of the most successful approaches to complete MaxSat

▶ ... even before the addition of abstract cores.
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Further Reading and Links

Surveys
▶ “Maximum Satisfiability” by Bacchus, Järvisalo & Martins

▶ Chapter in vol. 2 of Handbook of Satisfiability
▶ Now available.

MaxSat Evaluations https://maxsat-evaluations.github.io
Most recent report: [Bacchus, Järvisalo, and Martins, 2019]

https://maxsat-evaluations.github.io


Thank you for attending!
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