Solving Optimization Problems via Maximum Satisfiability: Encodings and Re-Encodings

Jeremias Berg

ACP Doctoral Research Award @ CP2020

September 11, 2020

Who am I?

www.jeremiasberg.com

- MSc. in mathematics.
- Graduated with distinction from the University of Helsinki in June 2018.
 - Supervisor: Prof. Matti Järvisalo.
 - PhD Committee:
 - Prof. Peter Stuckey,
 - Prof. Lakhdar Sais and
 - Prof. Inês Lynce as the opponent.

Thanks to Matti Järvisalo and Ruben Martins for providing material for these slides

My Doctoral Research

Developing Maximum Satisfiability (MaxSAT) for solving real-world optimization problems.

More specifically:

- Understanding and developing solver independent preprocessing.
- Applying MaxSAT toward NP-hard data analysis problems.

My Doctoral Research

Developing Maximum Satisfiability (MaxSAT) for solving real-world optimization problems.

More specifically:

- Understanding and developing solver independent preprocessing.
- Applying MaxSAT toward NP-hard data analysis problems.

Outline

The talk is divided into two parts:

- Maximum Satisfiability in real world optimization.
- 2 Main results of doctoral research.

- Based on propositional logic
 - i.e. weighted Boolean combinations of binary variables.
- Builds on the success of SAT.
- Expanding range of real-world applications.
- Effective and often orthogonal alternative to e.g.
 - mixed integer programming
 - finite-domain constraint optimization
 - and others

- Based on propositional logic
 - i.e. weighted Boolean combinations of binary variables.
- Builds on the success of SAT.
- Expanding range of real-world applications.
- Effective and often orthogonal alternative to e.g.
 - mixed integer programming
 - finite-domain constraint optimization
 - and others

- Based on propositional logic
 - i.e. weighted Boolean combinations of binary variables.
- Builds on the success of SAT.
- Expanding range of real-world applications.
- Effective and often orthogonal alternative to e.g.
 - mixed integer programming
 - finite-domain constraint optimization
 - and others

- Based on propositional logic
 - i.e. weighted Boolean combinations of binary variables.
- Builds on the success of SAT.
- Expanding range of real-world applications.
- Effective and often orthogonal alternative to e.g.
 - mixed integer programming
 - finite-domain constraint optimization
 - and others

Applications of MaxSAT

Drastically increasing number of successful applications

Applications of MaxSAT

Drastically increasing number of successful applications

Central to the increasing success: Advances in solver technology

Evolution of MaxSAT solvers Plot provided by Ruben Martins

Unweighted MaxSAT: Number x of instances solved in y seconds

83% more instances solved in 10 years

J. Berg

ACP Doctoral Research Award

MaxSAT solving

Focus of the thesis (and these applications): SAT-based MaxSAT algorithms

MaxSAT solving

Focus of the thesis (and these applications): SAT-based MaxSAT algorithms

In more detail:

- Algorithms that make iterative use of SAT solvers.
- Three central ones:
 - model-improving,
 - core-guided and
 - implicit hitting set based.
- Central results of thesis applicable to all.

Results of Thesis Research

Six core publications aiming to improve MaxSAT-based solution methods to combinatorial optimization problems.

- Part 1: MaxSAT solving techniques, specifically preprocessing IJCAI 2015, ICTAI 2015, CP 2016, ECAI 2016
- Part 2: MaxSAT based approaches to solving data analysis problems AISTATS2014, AIJ 2015

Six core publications aiming to improve MaxSAT-based solution methods to combinatorial optimization problems.

- Part 1: MaxSAT solving techniques, specifically preprocessing IJCAI 2015, ICTAI 2015, CP 2016, ECAI 2016
- Part 2: MaxSAT based approaches to solving data analysis problems AISTATS2014, AIJ 2015

Six core publications aiming to improve MaxSAT-based solution methods to combinatorial optimization problems.

- Part 1: MaxSAT solving techniques, specifically preprocessing IJCAI 2015, ICTAI 2015, CP 2016, ECAI 2016
- Part 2: MaxSAT based approaches to solving data analysis problems AISTATS2014, AIJ 2015

Part 1: MaxSAT Preprocessing

Integrating preprocessing and solving requires care.

- Straightforward way degrades performance.
- Our more careful way improves performance.
- Liftings of SAT preprocessing rules have limited effect on MaxSAT algorithms.
 - Inability of affecting small unsatisfiable subsets of constraints is a fundamental limitation.

Integrating preprocessing and solving requires care.

- Straightforward way degrades performance.
- Our more careful way improves performance.
- 2 Liftings of SAT preprocessing rules have limited effect on MaxSAT algorithms.

onstraints is a

Integrating preprocessing and solving requires care.

- Straightforward way degrades performance.
- Our more careful way improves performance.
- 2 Liftings of SAT preprocessing rules have limited effect on MaxSAT algorithms.

- Integrating preprocessing and solving requires care.
 - Straightforward way degrades performance.
 - Our more careful way improves performance.
- Liftings of SAT preprocessing rules have limited effect on MaxSAT algorithms.
 - Inability of affecting small unsatisfiable subsets of constraints is a fundamental limitation.

Integrating preprocessing and solving requires care.

- Straightforward way degrades performance.
- Our more careful way improves performance.
- Liftings of SAT preprocessing rules have limited effect on MaxSAT algorithms.
 - Inability of affecting small unsatisfiable subsets of constraints is a fundamental limitation.

Subsequently

- Increasing number of solvers in MSEs use preprocessing.
- Improved theoretical understanding of MaxSAT preprocessing.

[Berg and Järvisalo(2019)]

Part 2: MaxSAT for Data Analysis

Correlation Clustering

- A set of datapoints to be clustered.
 - Pairwise similarity measure over the points.
- Want a clustering that correlates well with the measure.
 - Similar points \rightarrow same cluster.
 - Dissimilar points → different clusters.
 - Note: No restriction on number of clusters.

Correlation Clustering

- A set of datapoints to be clustered.
 - Pairwise similarity measure over the points.
- Want a clustering that correlates well with the measure.
 - Similar points \rightarrow same cluster.
 - Dissimilar points \rightarrow different clusters.
 - Note: No restriction on number of clusters.

Applications in: biosciences, social network analysis, information retrieval, bioinformatics and microarray data analysis

Correlation Clustering

Main results

 Solutions obtained with MaxSAT are significantly better than the ones obtained by specialized approximative algorithms.

Bounded Treewidth Bayesian Network Structure Learning BTBNSL

• Starting from observations (data) learn a Bayesian Network that explains the data as well as possible.

- NP-hard
- Restrict the treewidth of the learned structure.
 NP-hard

Bounded Treewidth Bayesian Network Structure Learning BTBNSL

• Starting from observations (data) learn a Bayesian Network that explains the data as well as possible.

- NP-hard
- Restrict the treewidth of the learned structure.
 - NP-hard

BTBNSL Main Results

- MaxSAT scales better than other declarative approaches .
- Adding the (highly non-trivial) treewidth constraint to the encoding improves overall performance.

ACP Doctoral Research Award

Additional Results of Thesis Research

- Seven related papers developing MaxSAT algorithms and applications,
- Contributions to open-source software

[Korhonen et al.(2017)Korhonen, Berg, Saikko, and Järvisalo, Saikko et al.(2016)Saikko, Berg, and Järvisalo]

Openly available benchmark sets [Berg et al.(2018)Berg, Hyttinen, and Järvisalo]
 Used in MSEs since 2015.

Additional Results of Thesis Research

- Seven related papers developing MaxSAT algorithms and applications,
- Contributions to open-source software

[Korhonen et al.(2017)Korhonen, Berg, Saikko, and Järvisalo, Saikko et al.(2016)Saikko, Berg, and Järvisalo]

Openly available benchmark sets [Berg et al.(2018)Berg, Hyttinen, and Järvisalo]
 Used in MSEs since 2015.

Recent Highlights

- Hybrid algorithms for MaxSAT:
 - Loandra One of best incomplete solvers in recent MSEs.

[Berg et al.(2019)Berg, Demirovic, and Stuckey]

• Best paper award at SAT 2020. [Berg et al.(2020)Berg, Bacchus, and Poole]

Take Home Message:

Modern MaxSAT has developed into an effective and competitive approach to exact optimization.

Take Home Message:

Modern MaxSAT has developed into an effective and competitive approach to exact optimization.

My thesis research played a small part in this.

Take Home Message:

Modern MaxSAT has developed into an effective and competitive approach to exact optimization.

My thesis research played a small part in this.

- Better hybrid search techniques (e.g. inprocessing).
- Incremental applications of solvers to further improve scalability.
- Improved understanding of the relationship between applications and optimization paradigms.

Take Home Message:

Modern MaxSAT has developed into an effective and competitive approach to exact optimization.

My thesis research played a small part in this.

- Better hybrid search techniques (e.g. inprocessing).
- Incremental applications of solvers to further improve scalability.
- Improved understanding of the relationship between applications and optimization paradigms.

Take Home Message:

Modern MaxSAT has developed into an effective and competitive approach to exact optimization.

My thesis research played a small part in this.

- Better hybrid search techniques (e.g. inprocessing).
- Incremental applications of solvers to further improve scalability.
- Improved understanding of the relationship between applications and optimization paradigms.

Take Home Message:

Modern MaxSAT has developed into an effective and competitive approach to exact optimization.

My thesis research played a small part in this.

- Better hybrid search techniques (e.g. inprocessing).
- Incremental applications of solvers to further improve scalability.
- Improved understanding of the relationship between applications and optimization paradigms.

Thank you!

I would like to thank:

- the Association for Constraint Programming,
- my supervisor Matti Järvisalo,
- the people involved in the nomination:
 - Inês Lynce,
 - Peter Stuckey,
- as well as all my co-authors and collaborators:
 - Paul Saikko,
 - Brandon Malone
- and all of you for watching.

Bibliography I

J. Berg, A. Hyttinen, and M. Järvisalo.

Applications of MaxSAT in Data Analysis.

In POS@SAT, volume 59 of EPiC Series in Computing, pages 50-64. EasyChair, 2018.

Jeremias Berg and Matti Järvisalo.

Unifying reasoning and core-guided search for maximum satisfiability.

In Francesco Calimeri, Nicola Leone, and Marco Manna, editors, *Logics in Artificial Intelligence - 16th European Conference, JELIA 2019, Rende, Italy, May 7-11, 2019, Proceedings*, volume 11468 of *Lecture Notes in Computer Science*, pages 287–303. Springer, 2019. doi: 10.1007/978-3-030-19570-0_19. URL https://doi.org/10.1007/978-3-030-19570-0_19.

Jeremias Berg, Emir Demirovic, and Peter J. Stuckey.

Core-boosted linear search for incomplete maxsat.

In Louis-Martin Rousseau and Kostas Stergiou, editors, Integration of Constraint Programming, Artificial Intelligence, and Operations Research - 16th International Conference, CPAIOR 2019, Thessaloniki, Greece, June 4-7, 2019, Proceedings, volume 11494 of Lecture Notes in Computer Science, pages 39–56. Springer, 2019. doi: 10.1007/978-3-030-19212-9_.3. URL https://doi.org/10.1007/978-3-030-19212-9_3.

Jeremias Berg, Fahiem Bacchus, and Alex Poole.

Abstract cores in implicit hitting set maxsat solving.

In Luca Pulina and Martina Seidl, editors, Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd International Conference, Alghero, Italy, July 3-10, 2020, Proceedings, volume 12178 of Lecture Notes in Computer Science, pages 277–294. Springer, 2020. doi: 10.1007/978-3-030-51825-7_20.

URL https://doi.org/10.1007/978-3-030-51825-7_20.

Bibliography II

Tuukka Korhonen, Jeremias Berg, Paul Saikko, and Matti Järvisalo.

MaxPre: An extended MaxSAT preprocessor.

In Serge Gaspers and Toby Walsh, editors, Theory and Applications of Satisfiability Testing - SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August 28 - September 1, 2017, Proceedings, volume 10491 of Lecture Notes in Computer Science, pages 449–456. Springer, 2017.

doi: 10.1007/978-3-319-66263-3_28.

URL https://doi.org/10.1007/978-3-319-66263-3_28.

Paul Saikko, Jeremias Berg, and Matti Järvisalo.

LMHS: A SAT-IP hybrid MaxSAT solver.

In Nadia Creignou and Daniel Le Berre, editors, Theory and Applications of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux, France, July 5-8, 2016, Proceedings, volume 9710 of Lecture Notes in Computer Science, pages 539–546. Springer, 2016.